UNITED STATES PATENT OFFICE

2,089,603
CIPHERING MACHINE

In Sweden February 21, 1935

In clphering machines mechanical means are usually employed in order, after each indication or marking of a primary sign, that is, a clear text sign, when ciphering, and a cipher-sign, fect the displacement, of the element or elements which serve to reproduce, or control the reproduction of the secondary signs, that is, the cipheralgns, when ciphering, and the signs of the orig10 inal text, when deciphering. The reproduction af the secondary signs may be effected by any of the methods as hitherto used in connection with ciphering machines, that is to say, by direct reading, by printing, by the reading from signal lamps or by printing on a typewriter. The devices as hitherto used for effecting the displacement have only allowed certain predetermined adjustments and, as à result," they hāve nōt b̄een àble to afford the large range of variations which is necessary to safeguard, at least practically, the cipher against unauthorized reading
The present invention has for its primary object to provide a displacing device which permits the production of ciphers which will be practically impossible to force Another object of the invention is to provide a ciphering machine having such a displacing device, which is of a comparatively simple structure, easy to handle and so compact that it may be carried in a pocket

The invention is characterized, chlefly, by the fact that the displacing device comprises a plurality of operative elements so arranged that they may be brought into and out of operative position. in order to permit any desired variation of the number of elements in operation at a time and, thus, also of the number of displacing steps.
A ciphering machine embodying this invention is illustrated in the annexed drawings. Fig 1 is a front view of the machine, and Fig. 2 is a 40 plan view with the cover of the machine casing removed and with certain parts broken away, or shown in section. Fig 3 is an end view, partly in section, and FIgs. 4 to 6 show cross sections on the lines A-A, B-B and C-C, respectively, of Fig. 2.

Most of the parts of the ciphering machine are enclosed in a boxilie casing, at the same time forming the frame of the machine Said casing comprises a bottom piece 4, which also constitutes walis i and 2 rigidls secured to the bottom plece and a removable cover 5 , which may, if desired, be hinged to the bottom plece Also belonging to the frame parts is a partition 3 secured to the

Extending between the end walls are a plurality of shafts B, 1,8 and 8 of which the shafts 8 and 8 are rigidly attached to the end walls, while shaft 8 is rotatably and shaft 1 both rotatably and slidably mounted therein. Secured to the shaft is a toothed wheel 10 meshing with a toothed wheel 12 on the shaft of a crank II, whereby the shaft 8 can be rotated in the direction of the arrow 13 (FIg. 4) when the crank is rotated in a clockwise direction
Mounted on the shaft 6 so as to rotate thereon independently of each other, are a plurality of wheels 14 to 18, hereinafter referred to as "keywheels". Each of these key-wheels is rigidly attached to a toothed wheel 18 to 23, respectively, and each of these toothed wheels is in mesh with_a separate_one of a set of pinions 24 to 28 carried by the shaft 7 By pushing the shaft 7 to the right in Fig 2, against the action of the spiral spring 28, which tends to keep the shaft in the position shown in the figure, the toothed wheels 24-28 can be brought out of mesh with the toothed wheels 19-23 in order to permit a rearrangement of the key-wheels with respect to each other To this end the shaft 1 carries a knob 30 at its end projecting through one end wall I of the casing The shaft 7 also carries a toothed wheel 31 having a bush 32 formed with an axially extending slot engaged by a pln 33 secured to the shaft 7 (FYgs 2 and 5) The toothed wheel 31 is, therefore, caused to rotate with the shaft 7 but does not follow the shaft when displaced axially secured to the shaft 8 is an arm 31 by which the toothed wheel 31 is moved one step for each revolution of shaft 9. By this movement the pinions $24-28$ carrled by the shaft I are also moved one step, inasmuch as each of them has the same number of teeth. for instance, ten, as the toothed wheel 31 has

The toothed wheels $18-23$ rigidly connected to the key-wheels have each a different number of teeth The numbers of the various wheels are chosen so that they, as far as possible, are prime factors, or at any rate' have no common denominator. In the present example, the wheels 19-23 have seventeen! nineteen, twenty-one, twentythree, and twenty-five teeth, respectively. By this feature, the key-wheels will return to their common starting position only after a very long period of step-by-step movement through the action of the toothed wheels 24-28, corresponding to the product of the numbers of teeth of all of said toothed wheels.
The key-wheels are formed with a set of equally spaced axially extending holes adjacent the 55
periphery of the key-wheels, sald holes belng equal in number to the teeth of the respective toothed wheels 18-23. Inserted in said holes are cyindrical pins 35 the length of which is slightiy pins may slide in the holes so as to protrude on the one side or the other of the key-wheels, sping operated locking means, not shown, being provided to maintain the pins in their end positions. 10 The rey-wheels carry on their peripheral portion a row of signs, which in the case illustrated are taken from the letters of the alphabet. Baid signs are visible through apertures 36 formed in the cover 5 and serve to indicate the postion of 15 the respective key-wheels. In order to facilitate the displacement of the key-wheels by hand, the isey-wheels are provided with a milled flange which can be operated through the aperture 36. By means of pawls engaging the toothed wheels 20 18-28, one of which is shown at 31 in Fig. 4, the toothed wheels are maintained in proper position for restoring their engagement with the toothed wheels 24-28 when the shaft 7 is allowed to return to its normal position, after having been 25 decoupled.

The shaft 2 carries a cylindrical drum rigidly secured to the shaft which extends along the keywheels. Said drum comprises two discs 30, keyed to the shaft, and a number of bars 38 which en30 gage radial grooves in satd dises, in which they can slide longitudinally. Said bars are malntained in their engagement with said grooves by means of rings 40 provided at the ends of the drum. Said bars, the number of which in the ex35 ample shows is twenty-ive, may be pushed from their normal position. as shown in Fig. 2, thus far to the left that, when the drum is rotated in the direction of the arrow 13, their left hand ends 41, which represent a row of teeth, will be brought 40 into engagement with the teeth of a toothed wheel 42 mounted on a journal attached to the partition 3. The bars 38 are held in their end positions by means of spring operated locking members, not shown, or by frictional engagement.
45 Bach of sald bars carries between the rings 40 an aboutment 43 projecting slightly beyond the periphery of the drum. These abutments are arranged in groups approximately in register with the various key-wheels. Thus, for instance, 50 the abutment of one bar is in register with the key-wheel 18, the abutments of two bars are in register with the key-wheel 11, the abutments of four bars are in register with the keywheel 16, the abutments of eight bars are 55 in register with the key-wheel 1B, and those of ten bars are in register with the key-wheels 14. The number of bars belonging to the individual groups is so chosen as to allow any desired number of bars, that is, in the example shown, from 00 one to twenty-five, to be displaced to the left under the influence of one or more groups of abutments.
The displacement to the left of the bars 38, individually or in groups, is effected by means of 65 guide arms 44 disposed beside the key-wheels, said guide arms being mounted to swing about shaft 8 The guide arms are each formed with a projection AAa, FIg. 4, by means of which they may be acted on by those pins 35 which protrude 70 on the same side of the key-wheels, where the guide arms are positioned, so as to be caused to swing towards the periphery of the drum 2t, as shown in Fig. 4, and, as far as the guide levers provided beside the key wheels 14, is and is 75 are concerned, as also shown in Fig. 2. The
upper ends of the guide arms are bent to form oblique sliding surfaces 45 which in the above mentioned swung-out position of the guide arms are engaged by the abutments 43 of the bars 38 when the drum 28 is rotated, thereby displacing the abutments and thus also the bars 35 to the left in Fig. 2, bringing their ends, which serve as teeth, into proper position for engagement with the toothed wheel 42. In order to restore the bars 35 there is provided, just outside the respective (left) end of the drum, a gulde bar 48 secured to the partition 3 , the free end of which is bent towards the drum in an oblique direction with respect thereto After the bars 38 have been in engagement with the toothed wheel 42. they are brought, upon the continued rotation of the drum, into engagement with said bent end of the bar 15 to be thereby restored to their initial or starting position shown in Fig. 2. When the gulde arms 44 are not held in their swung-out position by the action of a ptn 35 of the respective key-wheel, they are retracted from the drum under the action of springs, one of which is shown at 41 in Fig 4, to the position shown in Fig. 2 in respect of the sudie arms situated beside the key-wheels is and 11. By this retraction the guide surfaces 45 of the levers are moved to a position outside the path of the respective abutments 43, so that upon the rotation of the drum the corresponding bars 39 will not be displaced and their ends serving as teeth will not be able to engage the toothed wheel 42.

On the left hand side, Figs 1 and 2, of the ciphering machine there is a freely accessible indicating device in the form of a circular disc 48 This disc carries on its peripheral portion a set of primary signs, which in the example illustrated inchude the twenty-six letters of the alphabet internationally used, ranged in their regular alphabetic order. The indicating disc 48 is secured to one end of a tubular shaft 48 rotatably mounted on the shaft δ Attached to the other end of sald tubular shaft 19 is a toothed wheel 80 , the number of teeth of which is equal to the number of signs of the indicating disc, that is, in the example shown, twenty-six surrounding the tubular shaft 48 is another tubular shaft II loosely mounted on the shaft 49, on which the reproducing elements of the machine are mounted. Said elements comprise, in part, a reproducing or reading disc 32 and, in part, a type wheel 58. The pertpheral portion of the reproducing or reading disc 52 carries a set of secondary signs which in the example shown consist of the same letters as those appearing on the indicating disc 48, though arranged in the reversed order. Said secondary signs are for the sake of reading them visible through an aperture 5 formed in the cover 5 . The type wheel 53, which serves to reproduce the signs by printIng them in a manner to be hereinafter described, is provided with the same set of signs as those appearing on the reproducing or reading disc E2. though the type letters are, of course, elevated and formed as refiected images of the respective letters and, in addition, displaced in the direction of rotation a certain angle suited to the place where the printing is to take place, so tha. the same sign will be printed as that shmultaneously visible through the aperture 54. Close by the toothed wheel 50 carried by the tubular shaft 49, an exactly similar toothed wheel Ef is secured to the tubular shaft 51, said wheel E5 being in constant mesh with the above mentloned toothed wheel 42 that can be operated by
the bars 39 The said two toothed wheels 50 and 55 and thus also the indicating and reproducing elements carried by the respective shafts 48 and 51 may be coupled together in order to Fig 5 , the in common by means of a pinion 56 , Fig 5, the width of which is sufficlent to permit the pinion to simultancously mesh with both of said first-mentioned toothed wheels In order to enable the release of all of the above said caused to each out of pinion may be caused to swing out of engagement with the toothed wheels 50 and 55 To this end the pinion 56 is carried by the outer end of a lever 51 mounted to oscillate about the shaft 8, the cam 58 n of said lever being controlled by a cam 58 on the shaft 9 through the intermedium of a lever 59 the free end of which engages the cam, said lever 59 being attached to the common bush 60 of the two levers 51 and 59 When released, the toothed wheels are maintained in their proper adjusted position under the influence of individual pawls Thus, for instance, the toothed wheel 55 is held in position by a pawl 61 acted on by a weak spring, said pawl, however, allows a continued feeding of the wheel any desired number of sleps The toothed wheel 56 is held in position by a pawl 62 carried by the lever 57, acted on by a spring 63 which at the same time tends to restore the lever 51 back again to the position shown in Fig 5, thereby keeping the lever 59 pressed against the cam 58 The toothed wheel 50, when released, is held in its temporary position by a pawl 64 This is due to the fact that said last-mentioned pawl is formed with an angularly bent arm 65, the fork-shaped end of which is engaged by a pin 100 projecting from the back of the lever 67, as shown in Fig 5, which acts during the outward swinging motion of the lever 51 to carry
40 the angular arm with it, thereby bringing the pawl 84 into a positive engagement with the teeth of the toothed wheel 50

The mechanism for printing the secondary signs is constructed as follows on the left hand
45 side wall 1 of the machine, Figs 1 and 2, there is attached a pin 66 situated on a line with the shaft 9, said pin being adapted to carry a paper roll, indicated by dotted lines at 61 in Fig 2. consisting of a narrow paper strip From sald
50 roll the paper strip is led from beneath round a guide cylinder 68, as shown in Fig 3 nigidly attached to the wall I which is concentric with respect to the shaft 1 The periphery of said gulde cylinder extends almost to the type wheel the guide cylinder is less than that of the paper strip to allow a feed roller 69 situated beside the gulde cylinder to also engage the paper strip. Said feed roller presents the same diameter as
00 the guide cylunder, and is mounted on the shaft 7 by means of a bush 70 A smaller roller 11 is provided to press the paper strip against the feed roller, the periphery of said smaller roller being preferably milled The portion of said 65 bush 10 situated inside the machine carries a ratchet wheel 72 engaged by a spring oparated pawl 13, Fig 6 This pawl is mounted on a lever 14 which is pivoted on the shaft 8 and the end of which is formed as a tooth pressed against
70 a cam 76 on the shaft \mathbb{C} under the action of a spring 75 The rotation of the shaft 9 imparts an oscillating movement to the lever 14 on account of the shape of the cam The pawl 13 which takes part in this movemen will feed the 75 ratchet wheel 12 one tooth for each revolution of
the shaft 9. The motion of the ratchet wheel is transmitted to the feed roller 89 which in turn feeds the paper strip a distance corresponding to the proper distance between two type letters

For the printing of the letters of the type wheel upon the paper strip, there is provided a bell crank lever 17, 78, pivoted on the shaft 8 im mediately inside the respective end wall 1 , the two arms 17, 18 of sald lever forming approxdmately a right angle to each other, as shown in Fig 6
The free end of arm 17 is offset, as shown at 79, and protrudes through an opening 80 in the end wall I into the guide cylinder 68, the peripheral portion of which is broken away right opposite sald aperture The aperture 80 and the broken away part of the guide cylinder are situated at the place where the paper strip passes at the shortest distance from the elevated letters of the periphery of the type wheel. The paper strip is here exposed to a beat of the hammerlike end portion 81 of the offset end 79 of the lever arm 11, and owing to this beat the strip will be pressed against that letter type of the type wheel which for the moment is in position for printing This type has been inked from the ink roller 82 in the preceding rotation of the type wheel so as to make a print of the letter upon the paper strip when pressed thereagainst The beat of the hammer 81 is controlled by a cam 83 on the shaft 9, Fig 6, said cam being formed with a recess into which the free end of the arm 78 will enter, as the shaft s rotates, under the influence of a spiral spring 84 acting on the free end of the arm 18 The type wheel and the paper roll are protected by'a surround: ing metal border 85 secured to the end wall I, and outside the end of the paper roll there is a protecting plate 85 carried by the screw-threaded end of the journal 68 and held in place by a nut 81

The operation of the ciphering machine above described is as follows. The machine is first adjusted, in order to bring it into correspondence with other machines of the same type, so as to function on a certain determined system To this end certain predetermined pins 35 of each of the key-wheels 14-18 are pushed into working position, that is to say, to the left in Fig 2 Then the key-wheels 14-18 are released by pressing the knob 30, inasmuch as this pressing action will bring the toothed wheels or pinions 24-28 out of mesh with the toothed wheels 19-23, belonging to the key-wheels. The keywheels are then rotated by hand, so that certain predetermined signs will be visible through the apertures 36 of the cover 5 The indicating disc 48 is now turned until a letter, agreed on, comes to a position in register with the arrow 88 , appearing on the protecting border 85 , as shown in Fig 1, to serve as an index, and at last also the reproducing or reading disc 52 is turned until a certain letter is visible through the aperture 54 In order to permit the sand last-mentioned adjustment, the crank $1 I$ is turned a little in either direction, so that the coupling between the reproducing or reading disc 52 and the indicating disc 48 will be released, allowing the former to be rotated by operating its milled flange accessible through the opening 54 After all parts have been thus adjusted, so that their letters form a certain combination, which may, for instance, represent an arbitrarlly chosen key word, the apparatus is ready for use.

The ciphering of a message is now accom- 7
plished by turning the Indicating disc 4850 as to place the letters of the clear text, one after another, before the inder 88

Subsequent to each adjustment of a letter, the revalution iram the position chown This rotation will cause the drum 18 to perform which are displaced to operative position under the influence of the pins 35 carried by the keywheels, the respective groups of bars 38 will be puahed to the left, in order upon the continued 15 rotation of the drum to displace the toothed wheel 42 a corresponding number of steps The coupling between the toothed wheels 50 and 55 has been released at the beginning of the movement of the crank in the way already described, 20 and the toothed wheel E5 meshing with the toothed wheel 42 will, therefore, be displaced the same number of steps, carrying the reading dise E2 and the type wheel 58 with it, while allowing the toothed wheel 10 and the indicating disc 48 25 to remain in their previous position With the adjustment shown in Fig. 2, a rotation of the drum 11 through one revolution will therefore cause those groups of bars 88 which are represented by one, four and ten abutments 43 to be
displaced into worlding position, and as a result, the toothed wheel 42 and thus also the reading disc and the type wheel will be displaced fifteen steps, that is, for Instance, from the letter a to the letter \mathbf{P}. The said last-mentioned letter will thus become the cipher letter desired in the example under consideration. During the revolution, the arm 71 is osciliated by the cam 76 to seed the paper strip one space, and when this feeding has been completed, the end of the arm
4078 will engage the recess of the cam 88 just before the revolution is finisined, causing the cipher letter to be printed on the paper strip, as hereinbefore described After the last bar 98 has passed the toothed wheel 42, the key-wheels are the tooth of arm 24 acting on the toothed wheel 31, and as soon as the revolution has been completed, all of the bars 38 have been restored to thefr starting podition under the action of the or commencing the ciphering of the next clear text lefter

The dectphering of a cipher message is accomplished in the same way as the clphering op-
eration hereinbefore described The machine is Irst adjusted to suit the combination of letters or the key word agreed upon, and the letters of the edpher text are then brought before the index 18, one after the other, and for each letter 00 the crank 11 is turned one revolution, just as it was done in the ciphering operation, allowing the corresponding clear text letter to be read in the aperture 5 , or printed on the paper strip 87. It is to be noted that the possibinty of em65 ploying the same apparatus, without any modilfications, both for ciphering and deciphering operations, is based on the fact that the primary alphabet on the indicating disc and the secondary alphathet on the reading disc and the type wheel 70 are reeiprocal, that is, constst of the same signs, cithough the secondary signs are arranged in an inverse sequence as compared with the primary digns. The angle of displacement between the diges of the clear text and the correspomaing 75 ange of the chiner text. as compared with cor-
responding signs of the cipher text and those of the clear text, will then always be the same, os fact which is known per se from earlier cipherins machines.

The device above derctibed for eflecting the displacement of the reproducing elements for the secondary sigus under the control of the ker. wheels permits the full use of all poselbintics of variation with regard to the displacements which can be thought in connection with the geries of signs under consideration, allowing the production of a cipher well safeguarded againgt unauthorized reading. Due to the fact that the machine contains a number of elements reparesented by the bars 98 which corresponds to the largest number of displacement steps concefvable, all displacement intervals possible, in the example shown including from one to twentyfive steps, may be obtained. In the present case, the said elements, 1 . e. the bars 38, may be brought into and out of operative poadtion efther individually or in suitable groups. The satd different intervals follow each other in a regular series, controlled by the key pins 30, the periods of said series, however, belng so long as not to present any holds which may be utilized foranumauthorised reading of the cipher. The length of the period, as determined by the number and pitch of the kegwheels, will in the case under consideration be equal to 3900.225 , representing the product of the numbers of teeth of the toothed wheels 19-23 associated with the reywheels. By the choice of different ley words for every message to be clphered, it is poadtle to produce a large number of ciphers, without using any part of a series of displacement inter. vals of a previous message in a succeeding mewsage It is further to be noted that by anttable adjustments of the pins 9 of the kery-wheels. it will be possible to form a large number of new series of displacement intervals, in the case ni. der consideration, so large that their number can only be expressed by an astronomic figure. It is thus evident that an unauthorised reading of a message ciphered by means of the machine forming the subject matter of this invention in, practically, imposetble.
The displacing device hereinbefore described as well as the asscciated parts of the clphering machine may, of course, be varied in many diferent ways, as far as their construction is concerned, without departing from the principle of the invention The number of groups and the grouping of the elements acting in connection with a displacement of the reproducing elements for the secondary signs may be difierent from that above described and shown in the drawings. The tisplacing elements belonging to the various gronps may be coupled together and controlled by a common control member replacing the various abutments 83. Furthermore, they may be designed in another way than in the form of sliding bars adapted to act as teeth, and mas, for instance, be arranged upon a dise or an equivilent element instead of upon a drum, and as to theis bringing into working position, they mag be controlled by other means than the ley-wheels shown As to the indicating and reproducing elements, it is to be noted that said elements mag comprise, in their most simple form, a surie dise provided with signs, on which both the findication of the pirmary signs and, after rotation of the disc by means of the displacing device, reading of the ciphered text may talse place. In order that this emparatos mas be used for de-
ciphering purposes, it must be so designed as to cause the disc to rotate backwards a numiber of steps as determined by the key series, instead of rotating forwards, as in the ciphering opera-

6 tion, or the disc mas be displaced at intervals, the number of steps done by the disc at each interval representing, when taken in relation to the total number of signs of the disc, the complement of the number of steps as done by the ard of the ciphering operation. Said intervals may in the present case be easily obtained by allowing the disc to be displaced under the action of those sliding bars which remain in their original position in5 stead of by those sliding bars which are pushed to the left into their inactive position, contrary to what is the case in the coding operation. Likewise, the reproducing disc may be provided with signs appearing in an order quite different from that in which the signs of the indicating disc appear In that case it will be necessary, for the deciphering operation, to have another identically adjusted machine within reach, the indicating and reproducing discs of which carry 5 the same stgns as the Indicating and reproducing discs of the former machine, though arranged In the reversed order. It is possible, in the said last-mentioned case, to utilize one type wheel for printing the secondary text and the other for printing the primary text. The indicating element may, without departing from the principle of the invention, be designed, for instance, so that the indication may be realized by means of keys for the individual primary signs, as in a typewriter keyboard, or in some other way.

The displacing device according to the invention mas, of course, also be applied to ciphering machines having ciphering cyilinders, i e. to elec-
trical or electromechanical ciphering machines.
40 In that case the displacing device may either operate the clphering cylinders directiy or act to control contacts of an electrical or electromechanical displacing element.

What I claim is:-
45 In a ciphering machine, means for indicating the primary signs, means for indicating and reproducing the secondary signs, a gear wheel for operating said last-mentioned means after each indication of a primary sign, a device for
50 variably operating said gear wheel, said device including a rotatable carrier and a plurality of operating elements carried thereby, said elements being individually movable on the carrier into and out of position for engagtng said gear wheel,
55 and said carrier being adapted to be rotated through its entire path of rotation after each andication of a primary sign, in order that the gear wheel may be acted upon by all of sald operating elements in active position so as to be
60 able to displace the secondary indicating and reproducing means a number of steps equal to the number of elements in active position.
2. In a ciphering machine, means for indicating the primary slgns, means for indicating and
65 reproducing the secondary signs, said last-mentioned means being capable of occupying as many different positions as there are secondary signs, a gear wheel for operating sald secondary indicating and reproducing means after each indi70 cation of a primary sign, a device for variably operating said gear wheel, said device including a rotatable carrier and as many individually shiftable operating elements carried thereby as there are secondary signs, means for bringing said operating elements into and out of position for
engaging sald gear wheel, and means for moving said carrier through its entire path of rotation after each indication of a primary sign, in order that the gear wheel may be acted upon by all of the operating elements in active position so as to be able to displace the secondary indicating and reproducing means a number of steps up to that corresponding to the number of secondary signs.
3. In a ciphering machine, means for indicatIng the primary signs, means for indicating and reproducing the secondary slgns, a toothed wheel for moving said indicating and reproducing means after each indication of a primary sign a displacing device for variably operating sald toothed wheel, said displacing device including a rotatable carrier and a pluralits of shiftable elements carried thereby, said elements acting as teeth engaging said toothed wheel when shifted to operative position, and means to individually bring predetermined groups of said elements into operative position independently of the remaining groups.

4 In a ciphering machine, means for indicating the primary signs, means for indicating and reproducing the secondary signs, a toothed wheel for moving sald indicating and reproducing means after each indication of a primary sign, a displacing device for operating sald toothed wheel, sald device including a rotatable carrier and a plurality of shiftable elements carried thereby, sald elements acting as teeth in engagement with said toothed wheel, guiding means to engage said elements in groups for bringing individual groups in operative position independently of the remaining groups, and means for variably controlling satd guiding means

5 _In_a_ciphering_machine,-means_for_indicating the primary signs, means for indicating and reproducing the secondary signs, a toothed wheel for displacing said indicating and reproducing means after each indication of a primary sign, a displacing device for moving said wheel, said displacing device including a rotatable carrier and groups of shiftable displacing elements carried thereby, said elements being adapted to engage said wheel, and the groups thereof being so arranged as to include, elther individually or in combination with each other, any number of units of displacing elements up to the maximum number as represented by all groups together, a guiding device for controlling each individual group, and a key-wheel for each guiding device for bringing the respective group into active position Independently of the remaining groups.
6. In a ciphering machine, means for indicating the primary signs, means for indicating and reproducing the secondary signs, a toothed wheel for displacing the position of sald Indicating and reproducing means after each indication of a primary sign, a displacing device for controling said toothed wheel, sald displacing device comprising a rotatable carrier, teeth in said carrier shiftable from an inactive to an active position, in which they may engage said toothed wheel, guiding devices for shifting the position of said teeth in groups, and key-wheels for controling said guiding devices.
7. In a ciphering machine, means for indicating the primary signs, means for indicating and reproducing the secondary signs, a toothed wheel for displaclng said reproducing means after each indication of a primary sign, a displacing device for controlling said toothed wheel comprising a rotatable drum and a set of axdally extending bars
slidably mounted in said drum, said bars being shiftable between two extreme positions, viz an inactive position and an active position, in which they protrude at one end of the drum for engagement with sald toothed wheel, means including key-wheels to control the shifting of the bars, and means to rotate said drum one complete revolution after each indication of a primary sign.

8 In a ciphering machine, elements for indicasting the primary signs, elements for indicating the secondary signs, elements for reproducing the secondary signs, a toothed wheel to control the movement of said last-mentioned indicating and
15 reproducing elements, a rotatable drum adapted to be rotated one complete revolution after each indication of a primary sign, a set of axially extending bars slidably mounted in said drum so as to be capable of an axial movement therein be20 tween an inactive position and an active position, in which sald last-mentioned position they can engage said toothed wheel, guide arms to move predetermined groups of said bars into active position, and a set of key-wheels, one for each group, to control said gulde arms

9 A ciphering machine having, in combination, means for indicating the primary signs. means for indicating the secondary signs, means for reproducing the secondary signs, a toothed wheel
30 to control the movement of sald indicating and reproducing means, a rotatable drum adapted to be rotated one complete revolution after each indication of a primary sign, a set of axially ex-
tending bars slidably mounted in said drum so as to be capable of an axial movement thereln between an inactive position and an active position, in which they can engage said toothed wheel to move same upon the rotation of the drum, an abutment on each bar, gulde arms to engage sald abutments for moving groups of bars into their active position, a set of key-wheels having adjustable operating pins for acting on sald guide arms, said abutments being arranged into circumferential groups, a guide arm being provided for each group so that upon each revolution of the drum the guide arms acted on by the respective key-whe els will displace the corresponding group of abu ments and associated bars into their active position

10 A clphering machine having, in combinauon, means for indicaling and reproducing secondary signs, a shaft, means to rotate sadd shaft one complete revolution upon each operation thereof, a drum on sald shaft, axially extending bars slidably mounted in sald drum, another shaft, a set of key-wheels on said other shaft, means to rotate said key-wheels one step for each complete revolution of said first-mentioned shaft, an intermediate shaft, a toothed wheel thereon for operating sald indicating and reproducing means, and means under the control of the keywheels for shifting the position of said bars to bring vanous groups thereof into position to allow them to engage sald toothed wheel and rotate same upon the rotation of the drum.

BORIS CEESAR WILHELM HAGELIN

Aug. 10, 1937.

B C W HAGELIN	$2,089,603$
Ciphering machine	
Filed Aug 23, 1935	2 Sheots-Sheet 2
FIG-4.	

Aug. 10, 1937.

b c whagelin

2,089,603 CIPHERING MACHINE

$\stackrel{C}{C} \quad \stackrel{B}{-} \quad 4030$

REF ARAA58719

$$
2,059,603
$$

208
-60

1. (Basic M-209 or C-38 machine)
2. (U.S. has aequarod the whole, sughtr, title, aud whanot from Hageh and the Hagelim Eyptograph Co.)
3. ('U.S. han grantod to ttagalin a purgaliy - free bianse to manufucture teswa.tone-1)
4. (U,S, has a royalt frea, pereatual .to mpiovamersto. En this hachina. See Lioence aquement sygied 26 Soptig42)
