|
|
|
|
A complete ADF system consisted of a receiver with built-in display,
an antenna unit, special cables and a set of five antennas.
The image on the right shows a typical ADF-940-400 unit
that covers a frequency range of 26.7 to 28.5 MHz.
The left half of the front panel holds the display, which is common for
all ADF models of the era. It consists of a circular green/blue cathode
ray tube (CRT) with several adjustments to control the position,
intensity, and gain of the image on the CRT.
The right half holds the receiver which is implemented as a
removable panel or insert.
|
|
|
In the early 1960s, OAR had become successful in
the tuna fishing industry around San Diego.
A homing transmitter,
also produced by OAR, was attached to a tuna that was then put
back in the water. Being a social animal, the tuna would try to join
the nearest school of tunas, after which the direction finder
was used to find the school. Law enforcement agencies soon discovered
that the same principle could be applied to the
car of a suspect,
and started ordering OAR equipment. In some countries, such as
the Netherlands, ADF units were also used to
find illegal transmitters.
|
The following models of the OAR ADF direction finder are known.
Note that the 900-range was probably reserved for specials
and that the last two digits indicate the number of channels.
No information about these variants is publicly available at the moment.
|
-
At the time, the CB-band consisted of 23 AM-modulated channels, plus
five so-called A-channels or alpha-channels that were used
for radio controlled models [7].
➤ Wikipedia
|
All controls are at the front panel
of the ADF-940. At the left is the
typical cathode ray tube (CRT), or scope display, that was common
to all ADF models at the time.
It is basically a common oscilloscope of which the X and Y deflections
are used to create a rotating vector display. It is
surrounded by the usual knobs to adjust its brightness, position and gain.
At the far right are three fixed knobs for the audio volume,
frequency scanning and dimming of the scale light.
The right half holds a removable
aluminium panel that is affixed to the
front panel by means of four screws in the corners.
This removable panel offered
great flexibility, as it enabled OAR to create new variants of the
device, and to make customized specials that were adapted to the
customer's requirements. As an example: some units have a speaker
fitted on this panel, whilst on the model shown above this place
is used to accomodate a 40-channel 27 MHz scanner.
All connections are at the rear of the device. At the far right are
(from top to bottom) a 6.3 mm jack socket for a pair of headphones,
a 3A fuse, and the power input socket.
In this case the device is wired for connection of a 12V DC source,
such as the battery from the intercept vehicle.
At the far left are three BNC sockets to which the antennas of the
Adcock system are connected. The upper socket (YEL) is for connection of
the reference antenna that provides the signal that is heared through the
speaker. It also provides the reference for the other two channels (X/Y).
The lower two sockets are the X (BRN) and Y (RED) inputs that
provide the signals for the deflection of the CRT display,
resulting in a vector that points in the relative direction 1
of the transmitter.
|
|
-
This is the direction relative to the driving direction of the vehicle.
|
The ADF-940 can be tuned manually between 26.7 and 28.5 MHz, using
the large coarse/fine tuning knob. Alternatively, the receiver can be
restricted to the 40 channels of the 27 MHz CB band by pressing the bottom
right yellow button at the center of the insert. This enables the 2-digit
red LED display, on which the currently selected channel number is shown
(e.g. 14). The upper two yellow buttons are used to step UP/DOWN through the
available channels (1-40).
The scanning function is enabled by pressing the left/middle yellow button,
and makes the receiver step through all 40 channels, wrapping around at the
end, until a signal is detected. The threshold at which scanning is stopped
can be adjusted with the upper right knob on the front panel. Scanning can
be stopped at any time, by pressing the right/middle yellow button. Manual
tuning is resumed by pressing the bottom/left yellow button. This
turns the display OFF again.
|
OAR direction finders were not only popular in the maritime field, but
also with law enforcement agencies around the world. They were used in
particular by the FBI and the police to track the car of a suspected
criminal, and by the radio monitoring service for finding clandestine
transmitters.
|
When the police discovered that radio direction finders were successfully
used to track down a school of fish, it was decided to do the same to the
car of a suspected criminal. A small homing transmitter or
beacon was invisibly attached to the suspect's car and
allowed the police to follow it unobtrusively. In many cases, the suspect
unwittingly exposed his accomplices this way.
|
In the Netherlands, ADF units were also used to find illegal radio stations,
commonly known as pirates, operating in the FM broadcast band around
104 MHz. For this application, OAR built special receivers that covered a
particular segment of the desired VHF or UHF frequency band.
|
In the mid-1970s, when the use of the 27 MHz Citizen's Band (CB) was still
illegal, the country was flooded with affordable AM CB-radios
that caused a lot of radio and television interference.
The Radio Monitoring Service,
that was tasked with enforcement of the radio regulations, used
early ADF units to locate the illegal CB stations.
The image on the right shows the interior of an intercept vehicle of the
mid-1970s, that was used for this task. The ADF unit is clearly visible in
the middle. It is accompanied by several other receivers plus a
Sadelco field strength meter.
|
|
|
According to a former member of the
Dutch Radio Monitoring Service,
the RCD, the use of ADF units on VHF and UHF in urban
areas was not very successful, as most of the music stations used horizontal
polarization, whilst the ADF was only suitable for vertically polarized
radio signals. 1
Furthermore, the reflections on surrounding buildings
caused scatter on the CRT display [3]. This was mainly due to the fact that
OAR used the Adcock principle for its ADF devices, rather than the
Doppler Principle
which would have been more appropriate [4].
Doppler was successfully applied by OAR's competitor
Rohde & Schwarz in several products at the time.
And they still use it today.
➤ More about the RCD
|
The OAR ADF-940 is housed in a sturdy metal 'sleeve' that holds a metal
frame to which the front panel is attached. After removing just four screws
from the edges of the rear panel, the complete assembly, consisting of
front panel and metal frame, can be pulled from the front of the device.
|
The image on the right shows the interior of the device, after the frame
has been removed from the outer case shell, as seen from the front left.
Note that the speaker is mounted at the left side, but that some models
had it fitted at the front.
Most of the left half is taken by the
display with its circular CRT that
extends nearly to the rear side, a
HT voltage unit mounted in a small metal
enclosure, and supporting electronic circuits.
The right half of the case contains the
actual receiver, which has been
shielded carefully from the display electronics to avoid interference.
|
|
|
The controls of the receiver are mounted on a separate aluminium panel
that is placed at the right half of the front panel. It is removable, so
that the receiver can easily be adapted to the customer's requirements.
When removing the screws from the panel, it can be
collapsed forward.
|
When doing this, be careful not to damage the wiring as it is rather
fragile and all front panel parts are mounted very close to the
electronics on the boards behind it. When re-mounting the panel,
make sure not to cause any short-circuits.
One of the most interesting parts of the ADF-940 is the metal can
mounted at the far right. It contains the three nearly identical front-ends
that are used for the reference receiver and for the receivers that
cause the X and Y deflections on the CRT display. These sections are
carefully calibrated to match the supplied antennas.
|
|
|
The metal can to the left of the front-end contains the controller.
It is carefully shielded from the other circuit in order to avoid
interference. On this particular device, the controller handles the
display, the channel selection (1-40) and the scanning of the fixed
channels in the 27 MHz band.
|
The device is powered by a 12V DC source, such as the battery of a car,
which should be applied to the military 6-pin male socket at the rear.
Only two pins of this socket are used (B and D). The diagram below shows
the pinout when looking into the socket from the rear of the device.
|
- n.c.
- +12V DC
- n.c.
- 0V (GND)
- n.c.
- n.c.
|
|
- Wiring currently unknown
- ?
- ?
- ?
- ?
- ?
|
|
- Anonymous, ADF-940-400 automatic direction finder - THANKS !
Received December 2016. #CM-302429-DF.
- IEEE, Model ADFS-320 VHF band Automatic Direction Finder
IEEE Communications Magazine. September 1981. Page 66.
- Cor Moerman, Former member of the Dutch Radio Monitoring Service
Interview at Crypto Museum, December 2016.
- Charles J. Murphy, An evaluation of shore-based Radio Direction Finding
US Department of Transport, United States Coast Guard, Office of R&D.
CG-D-28-78. Final Report. September 1978.
- Elizabeth Tucker & Caryle Murphy, US Contractor Pleads Guilty in Tax Case
The Washington Post (newspaper). 3 December 1988
- The Free Library, Cubic Communications acquires direction-finding product line
Website. 12 October 1995.
- Wikipedia, Citizens band radio
Retrieved December 2016.
- Frank Adcock, British Patent 130,490
20 August 1918.
- Wikipedia, Adcock antenna
Retrieved December 2016.
|
|
|
Any links shown in red are currently unavailable.
If you like the information on this website, why not make a donation?
© Crypto Museum. Created: Tuesday 06 December 2016. Last changed: Friday, 30 August 2024 - 16:24 CET.
|
|
|
|
|