|
|
|
|
NRP CIA EC ← EC IV
The EC V was the result of a number of customer requirements and several
research experiments in which each part of the existing concept was
revisited. It was developed between 1960 and 1962 and was in fact a
complete overhaul of the earlier systems. It offered superior performance
and stability, and was in use until at least 1967.
The image on the right shows the redesigned EC V Passive Element (PE),
which looks similar to the PE of the earlier EC III system,
but contains a new internal design. The three wires extending from the
bottom are for connection of a microphone.
|
|
|
The Listening Post (LP) consists of a powerful
500W transmitter operating at 378 MHz, with an external
antenna matching unit, a very sensitive receiver
with spill-over cancelling, and separate antennas
for receive and transmit.
In order to speed up the development, the transmitter, and probably
also the antennas, were built to NRP specifications by an unknown third
party in the US.
A complete EC V system was extremely big and heavy, and was transported
in several suitcases of different design and make, in order to attract
the least attention.
The receiver rack came in three suitcases, whilst the
transmitter, the
accessories and the two antennas required several more.
The EC V was the last system that used passive elements at the target site.
Although several modifications were made in later years, including a completely
redesigned PE, the CIA eventually made the move to active target elements,
such as the SRT-52,
which were powered by batteries, consumed very little power and featured
advanced audio masking facilities.
|
The diagram below shows the new version of the Passive Element (PE),
known as the EC Mark V PE.
The slimline design is nearly identical to that of the
EC III PE,
and is suitable for embedding inside a piece of
furniture, such as a table leg,
and could easily be adapted to the environment.
The PE is in fact an open dipole, consisting of a tick and a thin element.
The thicker part contains the electronic circuit, whilst the length of the
thin part (the other half of the dipole) can be aligned in order to
match the environment (air, wood, concrete, etc.). The interior is not
easily accessible as the entire electronics circuit is potted in black epoxy.
At the bottom end are three wires for connection of a low or high
impedance microphone. It was commonly used with a Shure MC30.
|
There were three versions of the EASYCHAIR Mark III Passive Element:
|
|
Improvements over EASYCHAIR III and IV
|
|
|
Compared to its predecessors, the EC V offers the following improvements:
|
The diagram below shows how the EC V system works. A the left is the
Listening Post (LP) which consists of a powerful transmitter (TX),
a rather complex receiver
and two directional antennas.
The transmit antenna is aimed at the Target Area (TA) on the right,
where it provides energy to one or more Passive Elements (PEs).
As each PE has a different
subcarrier frequency (SC), they can be
received at the LP simultaneously. This way, up to three PEs
can be hidden in the target area.
As the receiver in this system is much more sensitive than in the
earlier concepts, and because the tranmitter is 10 times
stronger than before, a separate cancelling unit is added in order
to suppress any signal spill-over from the transmitter,
before it reaches the receiver's pre-amplifier.
The receiver has three individual IF/AF stages, one for each
PE channel (i.e. subcarrier frequency).
|
Development of the EC V started in 1959 with several studies into the
use of subcarrier signals,
transmitters, seperate receivers, etc. This led to
the conclusion that it was necessary to review the entire Easy Chair concept
and reconsider every design decision that had been made in the past.
|
As in each EASYCHAIR setup, the Passive Element (PE) that was covertly
installed in the Target Area (TA), was the most important part of the concept.
Over the course of 1959 and 1960, aided by the arrival of better components and
subminiature transformers, the design of the PE was improved.
The result was a drastic increase in sensitivity, an improved temperature range,
an improved power range (200-2500mV), and a much more stable sine-wave subcarrier
frequency (±2kHz) over the entire voltage and temperature range. The sine-wave
subcarrier also resulted in better secrecy.
|
|
|
When the first prototypes of the redesigned PE became available in 1962, they
were tested under simulated real-life conditions in order to avoid
implementation difficulties, as had been the case with the
EC III when
bugging the Russian Embassy in The Hague
(Netherlands) back in 1958.
|
For this reason it was decided to book a room in the nearby Hotel Belvedere,
approx. 200 metres north east of the rear side of Villa Wave Guide. 1
Thijs Hoekstra, who in 1958 had been involved in the bugging operation against
Russian Embassy, took position in the room and installed several PEs. The
image above shows Hoekstra holding a PE in his right hand. Note that another
one has already been installed inside the leftmost closet behind him,
taped to the right separation wall. In the image on the right, Hoekstra
watches a PE that has just been taped to the door at the right.
|
|
|
During the experiments Hoekstra is continuously in contact with
EASYCHAIR developer Gerhard Prins at the NRP,
via his portable Motorola FHTRU (H13) 2
VHF radio telephone [5].
Inside the suitcase on the table in front of him, is a simple field-strength
indicator used in earlier Easy Chair experiments, which allows him to find the
best possible position for installation of the PEs. 3
The image on the right is the last one that was taken at the test site.
It shows Hoekstra on the phone with Prins, with the PE taped to the
wall behind him, just to the right of the closet door.
|
|
|
Judging from other photographs in this series, the pictures were taken
in March or April of 1962, whilst the development of the PE had just been
completed. The powerful 500 Watts activation transmitter
was built in the US, whilst the
sensitive and complex receiver was made by the NRP.
|
-
Villa Wave Guide was the NRP's head quarters, located at the
North Sea coast in Noordwijk
(Netherlands).
-
Judging from the length of the antenna it is the H13 model operating in the
VHF-H band (approx. 153 MHz).
-
This field-strength indicator is made from an EC I passive element with a
meter connected to it.
|
The Passive Element (PE) of the EC V does not have a local energy source,
but is powered by a strong RF signal beamed at it from the nearby Listening
Post (LP). It is based on the design of the
EC III,
but has been improved in a number of ways. First of all one transistor has
been removed (now 3 transistors instead of 4) and transformers have been
introduced between the stages [D].
|
Furthermore, the subcarrier frequency on which the audio is Frequency Modulated
(FM) is now determined by a tuned LC circuit, which makes it more accurate and
produces a sinewave shape. 1
In the EC V system, up to three PEs can be used in the same Target Area (TA)
simultaneously. This was done by assigning a specific subcarrier frequency
to each PE during the manufacturing process: 90 kHz, 120 kHz or 150 kHz,
usually identified as L, M and H (low, mid and high). The subcarrier frequencies
are spaced by 30 kHz to allow for temperature induced frequency drift.
|
|
|
The image above shows a typical EC-V PE that consists of two halfs that can
be screwed together at the center. Together, the two halves form a ½λ
dipole antenna, whilst the thick half contains the electronic circuit.
The detector diode (crystal) is located at the threaded end of the thick half.
|
The two halfs can be separated to save space when transporting the device
and to protect the sensitive detector diode from excessively strong
RF signals prior to installation. Three PEs were usually supplied with
each EC-V system and their SC frequency (L, M or H) was printed on the
serial number label at the center of the thick half.
Although the PE design was finished in 1960 [C], it was not used with
the intermediate EC-IV system. Instead it was improved several times
before it was taken into production at the end of 1962 [D].
The first units were delivered in 1963.
|
|
|
The fact that multiple PEs could be used simultaneously in the same target
area, was an enormous improvement. They could be powered by the same activation
beam and allowed multiple rooms to be bugged and monitored in a single action.
When two PEs were installed in the same room, it greatly improved the
legibility of the signal (much like a stereo signal), which was a real
bonus when transcribing a conversation.
In 1964, the design of the PE was upgraded once more, with the introduction
of the transformerless PE, of which a thin and a flat variant were
made [2].
|
-
In the EC III, the subcarrier was more or less squarewave, making it
produce a number of unwanted sidebands that could potentially disclose its
presence. This was corrected in the EC V.
|
Although the new PE was based on the PE of the earlier
EC III,
the circuit was completely revisited, redesigned and modernised.
The final result is shown in the circuit diagram
below. Unlike the ?EC III, which consisted of four transistors,
the new PE had just three, all of which are Philips OC44.
The first two transistors (T1 and T2) are the audio amplifiers.
T3 is the subcarrier oscillator that now delivers a pure sinewave signal,
modulated with the audio for the amplifier stages. Depending on the selected
subcarrier frequency, some components are hand-picked during production.
The components in the red section at the right, are selected manually during
production in order to obtain the best matching of the antenna.
The 1N416 crystal is more efficient that the old CS2A.
|
|
Thin PE
transformerless PE
|
|
|
Despite the fact that the PE was much smaller than the initial one that was
used with the EC I
and EC II,
there was an ongoing desire to make it even smaller.
Although its length is dictated by the frequency — it's an antenna —
the standard version of the PE has a diameter of 13 mm,
which is largely caused by the
Fortiphone transformers
that are the widest components inside the unit.
|
For this reason, a research project was started in 1962 for the development
of a transformerless PE, which was intended to make the PE much thinner.
The research took most of 1962 and 1963, but the goal was ultimately achieved
[2].
In January 1964, the new 'thin' PE shown in the image on the right was
introduced. Is has the same length as the standard version, but is just
7 mm thick — about half the original thickness.
Unfortunately, the other half of the thin PE and the detector diode
are currently missing from our device,
which is why only one half is shown here.
|
|
|
The thin PE is fore-shorted for installation in wood, but can be extended
for use in free space by adding extra elements to one end.
According to the original development report [2], the other half of the thin
PE was equally thick, and the two halves
were separated by a polythene section that contained the crystal. Furthermore,
four wires were running from one half of the antenna to the other, and there
were no provisions for replacing the detector diode in case it got damaged.
|
The manual also states that the device was delicate, especially at the
center, and that it had to be shipped in a special transport container.
A mechanically stronger solution was provided in the shape of a rectangular
black potted variant of the transformerless PE, as shown in the image on the
right. It measures 94 x 25 x 7 mm and weights less than 30 grams. It has two
terminals for connection of a microphone and two flat contacts for connection
of the antenna elements.
The detector diode (crystal) is held in place by a screw, allowing it to be
replace when damaged.
|
|
|
Although the new design does not contain any transformers, it does have
a couple of coils, one of which even has a tap. For the thin PE they
had to be made equally thick
to an OC44 transistor, or else they wouldn't fit
the tight space. The new coils
were purpose-made by the NRP themselves.
|
Below is the circuit diagram of the transformerless PE. The circuit
contains two extra transistors, but the use of the fairly large Fortiphone
transformers is avoided. T1 and T2 form the first amplifier stage,
whilst the second stage has only one transistor (T3). Note that the design
now includes one NPN transistor (T2). The 4th transistor (T4) is used
as a temperature-dependent diode, which takes care of the base bias
compensation of T1 and base bias stabilisation of T2. Furthermore,
the base bias voltage of T2 is temperature-compensated by using an
NTC resistor.
The last transistor (T5) acts as subcarrier oscillator and modulator.
Its circuit is based on that of the standard PE, but has been modified
to make it more temperature independent. This is done by moving the
tuning capacitor from the collector of T5 to the base end,
and by replacing part of it by a so-called hi-K capacitor that
has a negative temperature coefficient (NTC). In this design, the 1N416
crystal is replaced by an 1N53, which has a better efficiency
and is much smaller.
|
-
No details about the Shure MC-14
microphone element are currently
available. The device is not found in any vintage Shure catalogue,
but is believed to be a variant of the
Shure MC-11.
|
In order to shorten the development time of the complete EASYCHAIR V system,
it was decided to have the transmitter developed and built by a third party
in the US. It was agreed that the CIA would take care of this, whilst the
NRP defined the functional specifications for the design [B].
|
The image on the right shows a complete EC V transmitter setup in one of the
secret rooms at the rear side of the NRP building in March 1962,
when carrying out the final tests of the EC V system and its new PEs.
The heavy transmitter is housed in the large Skyway suitcase at the right.
The black square at the center is the rear side of the directional antenna,
which is placed behind an opened window, aimed at the Hotel Belvedere
test site. approx. 200 metres away. At the max. output power of 500 W and an
antenna gain of 14dB, it delivered an ERP 1 of no less than 10 kW.
|
|
|
An output power of more than 500 Watts was considered unrealistic, as
experiments had shown that it would hardly increase the operational range
of the PE. A stronger signal also means that it could be detected more
easily and might cause interference in domestic equipment.
Furthermore, any spillover from the stronger transmission signal
would be harder to suppress in the receiver.
|
In practice, spillover cancellation was a two-step process. First of all
a small portion of energy was extracted from the transmitter's output by
means of a directional coupler between transmitter and antenna,
that was used as an antenna matcher.
It is shown in the block diagram below in yellow.
This unit supplies a cancellation signal (CANC) that is used by the
receiver's cancellation unit to suppress excess spillover.
The image on the right shows the antenna matching unit,
which is visible in the image above in the red circle.
It is probably the only surviving part of the EC-V LP.
|
|
|
The block diagram below shows the construction of the transmitter.
At the top left is the crystal-driven oscillator/exciter which produces an
output power of approx. 2.5 Watts. Included in the exciter are several
multiplying stages to reach the desired 370 to 390 MHz frequency range.
The 500 W Power Amplifier (PA) can be bypassed for low-power applications.
All stages are connected to a remote control center (RCC), allowing full
control over the transmitter from the receiver site, using a small remote
control unit (RCU), connected via a long multi-cable. The entire transmitter
was supplied by a third party, with the exception of the
antenna matching unit
at the right (yellow), which was made by the NRP as part of the complex
receiver setup shown below.
|
-
ERP = Effectively Radiated Power.
|
The receiver is by far the most complex part of the EASYCHAIR V system.
Development of the receiver and the accompanying PEs took from 1960 to
1962, during which time each design decision of the earlier EC systems
was reconsidered, resulting in many significant improvements.
|
The EC III's subcarrier FM modulation was kept, but was
much improved. Rather than using a square wave subcarrier, which caused
unwanted sidebands that might reveal the PE, a pure sinewave subcarrier
was used. By assigning a unique subcarrier frequency to each PE, three PEs
could be used in the same target area simultaneously.
The nominal subcarrier frequencies were defined at 90, 120 and 150 kHz,
and were commonly identified as L, M and H (low, medium and high).
Depending on the temperature and the energy level of the activation
beam, the frequencies could drift, which is why they are 30 kHz apart.
The image on the right shows the complete receiver which consisted of
five same-size modules, mounted in a 19" frame. The modules were usually
transported in two large suitcases.
At the bottom is the Cancellation Unit which reduces the amount of
transmitter spill-over.
|
|
|
Note the small black box at the front left, in front of the Cancellation
Unit. This is the remote control unit (RCU) of the transmitter which is placed
elsewhere in the building. As transmitter and receiver had to be placed as
far apart as possible (to reduce spill-over from antenna leakage
and reflections on objects) the RCU
allowed the transmitter to be controlled from the receiver site.
At the front right is a Telefunken Model 77 stereo tape recorder that
can record two channels.
The module above the Cancellation Unit is the receiver's front-end,
which is identified as the RF Unit. It consists of two individual paths with
a phase difference of 90° in order to make the system insensitive to phase
differences between the transmit and receive signals. A small portion of
the transmitter's energy is used as a Local Oscillator (LO) signal, and is
mixed with the received signal.
After amplification, the signal is fed to an AM detector. This principle
is known as autodyne operation or synchronous detection and is
also used in earlier EASYCHAIR systems.
After detection, the signal is filtered, phase shifted, and then combined
into a single signal which is indifferent of any phase shifts between TX and
RX signals. After further amplification, the signal is fed to three identical
IF/AF stages: one for each of the PE subcarrier frequencies or channels.
The three IF units are housed in separate enclosures which are mounted at the
top of the rack. Each unit consists of an adjustable attenuator, a filter,
a frequency converter, various amplifying stages, a limiter and finally an
FM discriminator which demodulates the actual PE audio. Once demodulated,
the signal is amplified to headphones and recording level. When using a
stereo tape recorder, two channels can be recorded simultaneously. When
recording the audio from two PEs in the same room, a spatial sound
is obtained, which will be more legible and easier to transcribe.
|
At present, little is known about the antennas that were used for the
EC V system. It is possible that, like the transmitter, they were made by
an external party, but it is also possible that the antennas of an
earlier EASYCHAIR set were used.
In any case, it is certain that separate antennas were used for transmitter
and receiver, and that they had to be separated properly in order to reduce
the spillover. It is also known that the antennas had a gain of
14dB (~20 times).
This means that at the maximum transmitter power of 500W, the effectively
radiated power (ERP) in the direction of the target, was approx. 10kW.
This was sufficient to power a PE inside a building at a distance of
more than 200 metres.
The image on the right shows the receive antenna in one of the secret
rooms at the rear side of the NRP building in March 1962, when testing
the new PEs at the Hotel Belvedere test site.
The antenna is placed in a
different room than the transmit antenna, to avoid spillover.
For the transmitter, an identical antenna was used.
|
|
|
From the photograph we learn that the antenna was a vertically polarized
5 or 6-element Yagi with corner reflector. The entire construction is
modular, in such a way that tripod, mast, reflector and Yagi antenna can be
disassembled or folded easily, in order to fit a regular travel suitcase.
|
In the above section about the receiver, the photograph of the
EASYCHAIR Mark V listening post shows a
Telefunken Model 77
valve-based tape recorder, which is also shown on the right.
Model 77 was in production from 1959 to 1963 and was Telefunken's first
stereo tape recorder [7]. In the EC V listening post it was used for
recording two channels (of the available three) simultaneously. At the time
(1962) it had a price tag of DM 699 (EUR 350).
|
|
|
In a system like the Easy Chair Mark V, it is extremely difficult to predict
the maximum allowed distance between the LP and the PE. Although the
system is designed for an operational range of 200 - 250 metres,
there are many factors that can reduce the actual distance, such as walls,
furniture, doors, trees, badly positioned antennas, etc.
This effect is known as path loss.
|
In practice, it was highly recommended to simulate the actual conditions of
the LP and the target area, so that the maximum allowable distance could be
determined, as well as the minimum required RF power to achieve this.
For this purpose, NRP developed the so-called
path loss survey system,
or TEC, that consists of a small RF source, an antenna and a
receiver. It allowed CIA personnel to accurately predict the performance of
the EC-V in a certain scenario, and compare the results to the
link budget.
➤ More information
|
|
|
Type
|
Mat.
|
Pol.
|
Pt
|
Vcb
|
Vce
|
Vcb
|
Ic
|
Tj
|
ft
|
Cc
|
hFE
|
Case
|
OC71
|
Ge
|
PNP
|
25mW
|
20V
|
20V
|
10V
|
10mA
|
75°
|
0.3MHz
|
30pF
|
30
|
TO-1
|
OC44
|
Ge
|
PNP
|
83mW
|
15V
|
12V
|
12V
|
10mA
|
80°
|
8MHz
|
12pF
|
100
|
TO-1
|
OC141
|
Ge
|
NPN
|
85mW
|
20V
|
120V
|
15V
|
400mA
|
75°
|
20MHz
|
?
|
100
|
TO-1
|
|
|
OC71/OC44/OC144 pinout - bottom view
|
|
- NRP/CIA, Collection of documents related to Easy Chair Mark V
Crypto Museum Archive, CM302535 (see above).
- NRP/CIA, Final Research Report on Transformerless P.E.'s
January 1964. Crypto Museum Archive CM302564.
- Gerhard Prins, Letter to his heirs
Date unknown, but probably written shortly before his death in April 1993.
Vertrouwelijk (confidential). Published by [4].
- Maurits Martijn & Cees Wiebes, Operation Easy Chair
De Correspondent. 24 September 2015.
- Geoff Fors, Motorola FM mobile 2-way radio equipment
Portable Sets to 1957. (2000) Retrieved February 2017.
- NRP, Collection of photographs of EC-V test session
March/April 1962. Crypto Museum Archive CM500273/A.
- Philip I. Nelson, Telefunken Model 77 magnetophon (1959)
Website: Phil's Old Radios, 1995-2017. Retrieved March 2017.
|
|
|
Any links shown in red are currently unavailable.
If you like the information on this website, why not make a donation?
© Crypto Museum. Created: Tuesday 24 January 2017. Last changed: Tuesday, 06 June 2023 - 14:01 CET.
|
|
|
|
|
|