EC Mark II

Part B - Technical Manual

June 1956 (est.)

Project Easy Chair

PART B

TECHNICAL MANUAL

OF

C.P. Ol-EQUIPMENT

2

CONTENTS

I. Modulator Page 1		
II. Transmitter " 10		
III. Receiver " 15		
IV. Antenna and duplexer " 19		
V. Passive element " 21		
Circuit diagram of Microphone pre-amplifier Component lay-out of " " "	Fig.	lA
	17	2
Circuit diagram of Speech detector Component lay-out of " "	11	2A
Circuit diagram of Audio switch	**	3
Component lay-out of " "	19	3A
Circuit diagram of Driver amplifier Component lay-out of "	77	4 4A
Circuit diagram of 20kc/s Power amplifier	**	5
Component lay-out of " " "	11	5A
Circuit diagram of Audio power amplifier	11	6 6A
Component lay-out of		
Circuit diagram of control panel, etc.	11	7
Interconnection between units I - V	11	8
Block diagram of modulator and transmitter	п	9
Circuit diagram of Transmitter power supply	11	10

Circuit diagram	of Tr	ansmitter	Fig.	11
Circuit diagram Component lay-ou	of Ret	ceiver	†† ††	12 12A
Circuit diagram	of De	tector	n	13
Circuit diagram Photograph of	of Du	plexer	97 79	14 14A
Circuit diagram	of Pe	assive element	n	15
Assembly Instruc	tions	for General Ra	dio Connecto	rs

I.

THE MODULATOR

General

The modulator has the function of supplying the required modulation power for the v.h.f. transmitter. This modulation consists of an amplified microphone voltage used to convey speech information to a remote point as required for carrier-pigeon operation, and a 20 kc/s signal used to activate a muting switch in the base station receiver.

During speech intervals the signal to noise ratio of the transmitted signal should be as high as possible, dictating a switching circuit in the microphone amplifier path and the use of an overall r.f. - a.f. negative feedback from aerial plug to input of the modulation amplifier.

Easy and smooth operation is obtained by making the switching circuits voice-operated and choosing the time constants of switching on and off in accordance with the characteristics of speech.

The modulation depth of the transmitter should not vary appreciably during control of the output power over a range of approximately 1: 100.

Description of the circuits

Microphone pre-amplifier (Fig. 1)
The microphone voltage is amplified by cascaded transistors V₁ and V₂, after which the signal splits up.
One path leads via transistor V₄ to the speech detector (Fig. 2). The other path goes via amplifier V₃ to the audio switch (Fig. 3).
The gain of amplifier V₁ and V₂ is manually controlled in 8 steps by a variable feedback switch S₁ and resistors (Fig. 7). A preference for the higher audio frequencies of the microphone used is compensated by a condenser C₅ shunted across a feedback resistor R₁₁. The gain of transistor V₃ is automatically controlled by a d.c. control voltage derived from the rectified transmitter r.f. output, the purpose of which will be discussed later.

Speech detector (Fig. 2) The input audio signal comes from the microphone preamplifier and drives the transistor V5, the latter being normally non-conducting by a negative bias on the emitter, into a conductive state. The voltage across condenser C16, which is normally high, drops rapidly to a low value during conduction of V5. The loading on this condenser by subsequent circuits is minimized by cascaded emitter-followers V6 and V7. The result is a rapid switchover from the "no-speech" to the "speech" situation and a slow return from the "speech" to the "no-speech" situation, the latter time-constant being about 0,2 second. A part of the output from V, is fed to V8, V8 serving the purpose of "slicer" and of current amplifier for activation of the audio-switch (Fig. 3). The output of emitter-follower V7 also feeds the oscillator transistor V9 in combination with the bleeder R33 - R34. In the "speech" situation this oscillator generates a 20 kc/s voltage and drives the buffer transistor V10 which, in turn, drives the 20 kc/s power amplifier (Fig. 5). The output of the buffer transistor V10 is stepped down to a low-impedance by transformer T2. The low-impedance output voltage is also used as a local negative feedback to the emitter of V10. In the "no-speech" situation the supply voltage to the oscillator is reversed in polarity, thereby ensur-

Audio switch (Fig. 3)

The amplified microphone voltage from the microphone pre-amplifier is fed to the input of the audio-switch. During "no-speech" situations connection 6 is negative with respect to connection 5 which renders diodes D3 and D4 conducting and diodes D1 and D2 non-conducting. Therefore no unwanted background noise from the microphone or microphone pre-amplifier can pass to transformer T3.

When the speech detector (Fig. 2) is transferred to the "speech" situation as a result of speech actuating the microphone, the polarity of the voltage between

terminals 5 and 6 is reversed.

ing a non-oscillating condition.

This reverses the conducting state of the diodes mentioned and the incoming audio signal is passed almost entirely to transformer T_3 .

The output of transformer T₃ is combined with the A.C. part of the rectified transmitter output, entering this panel on connection 2, so as to give the desired degree of overall r.f. - a.f. negative feedback. To preserve stability in the feedback loop phase-correcting condensers C₂₂ and C₂₃ have been added. The combined output goes via connection 3 to the input of the driver amplifier. (Fig. 4).

Driver amplifier (Fig. 4)
The input emitter-follower V₁₁ provides a high input impedance to reduce the loading on the preceding audio switch. The signal is amplified by transistor V₁₂ and an inversed-phase signal is generated by V₁₃. The symmetrical audio signal thus obtained drives the emitter-followers V₁₁ and V₁₂

followers V₁₄ and V₁₅. Bias voltage for the power output transistors located on the audio power amplifier panel (Fig. 6), comes from the same and enters the driver amplifier at connection 5, to be passed to the power amplifier transistors again together with the audio signal from V₁₄ and V₁₅.

Phase-correction by R54 - C30 improves feedback stabil-

The 20 kc/s signals entering the driver amplifier via the feedback circuit might reduce the driving possibilities of the power output transistors and might interfere with the regular 20 kc/s modulation of the transmitter. Therefore signals of this frequency are shorted by the series-tuned circuit L1 - C29.

20 kc/s Power amplifier (Fig. 5)
The 20 kc/s signal from the speech detector directly drives the power transistor V₁₆ which is normally nonconducting. The collector load of V₁₆ consists of the tuned transformer T₄. Part of the secundary of this transformer is connected in series with the anode voltage circuit of the r.f. transmitter output amplifier, thus causing a 20 kc/s amplitude modulation of the r.f. signal.

The 20 kc/s voltage across the whole secundary of TA is connected to a neon bulb NE. This neon bulb serves the double purpose of giving an instantaneous indication of the "speech" situation and of stabilizing the amplitude of the 20 kc/s modulating voltage under widely differing conditions of loading by the transmitter.

Also contained in this panel is a voltage-dropper to reduce the 13.5 V d.c. from the rectifier-stabilizer to 6.5 V d.c. as required by the low-level circuits of Fig. 1. 2 and 4.

A Zener diode D5 in the lower branch of the voltage

divider provides a low internal impedance.

Audio power amplifier (Fig. 6) The output from the driver amplifier (Fig. 4) drives the output power transistors V19 and V20 via the impedance-lowering emitter-followers V17 and V18. The collector outputs of V19 and V20, working as class-B amplifiers, are connected to the modulation matching transformer T5 (Fig. 7). The power supply for the modulator is also contained

in this panel.

An a.c. voltage from the transmitter power transformer To (Fig. 10) is rectified by bridge-rectifier Do and fed through a voltage stabilizing circuit in which transistor V22 acts as a variable series resistor. The driving voltage for V22 comes from V21 and is derived from the difference between the d.c. output voltage and a d.c. reference voltage obtained from a pair of Zener diodes D6 and D7.

This circuit gives an effective hum suppression and shows a low output impedance to the varying load by

the class-B output power amplifier.

A voltage divider in which the lower branch consists of a temperature-dependent resistor R68 supplies the necessary bias voltage for the power transistors V19 and V20, this voltage being fed via V14-V15 and V17-V18 to the bases of V19 and V20.

The storing condenser C38 and the decoupling condensers C36 and C37 are mounted on a separate panel (Fig. 7).

Control panel, etc. (Fig. 7) On the control panel two plugs are mounted, one for the microphone and the other one for interconnection with the r.f. transmitter.

The microphone plug is wired to the microphone preamplifier input via a shorting contact on the microphone sensitivity switch Sj, which shorts the microphone when the carrier-pigeon procedure is not

required.

Besides this shorting position the switch Si has 8 other positions, each position differing from the next one by a 5 db difference in microphone sensitivity. The sensitivity differences are obtained by switching in different values of negative feedback resistance in the microphone pre-amplifier circuit. Also mounted on the control panel is the neon indicator NE.

Mounted in the cabinet, directly behind the control panel, is the modulation matching transformer T5 and a shunting impedance R70-C35 across the secundary of T5 which improves stability in the feedback loop and decreases loss of 20 kc/s modulation signal

across T5.

The plug interconnecting modulator and transmitter carries the 50 c/s supply voltage, the modulator output voltage, the rectified transmitter output for negative r.f. - a.f. feedback and an interconnection preventing damage to the transmitter output tube when the interconnecting cable is not plugged in at both ends.

At the right-hand side of the cabinet the condensers C36 and C37 are mounted, as well as a bank of 18 condensers, designated as C38.

Some remarks about the modulator operating details

A good understanding of the co-operation between and the peculiarities of the combinations of circuit elements chosen is thought very helpful for maintenance and test purposes.

The r.f. output stage of the transmitter is anodemodulated and offers to the modulator a load resistance of approx.: anode voltage divided by anode current.

16

The output power control varies the screen voltage of the r.f. output tube and the anode current thereby varies in accordance. Thus the load resistance offered to the modulator also varies.

The audio modulator output stage is a class-B transistorized amplifier having a high internal resistance (if not saturated). Therefore the voltage gain of this stage increases with increasing values of load resistance.

This means that for a given modulation percentage the driving voltage for the transistor audio amplifier must be smaller when the output power control is adjusted to a lower value.

It is for this reason that the d.c. part of the rectified r.f. output power is used to control the gain of amplifier stage V3 in the microphone pre-amplifier, counteracting in this way the change of sensitivity of the audio power-amplifier.

The ratio of microphone output voltage and modulation percentage is thereby held reasonably constant over a wide range of r.f. output powers.

Another point of interest is the constancy of the negative feedback factor.

With a lower output power setting the gain in that part of the audio amplifier, which is included in the feedback loop, is higher, but the a.c. part of the negative feedback voltage, derived from the rectified r.f. output, is at the same time smaller. These effects oppose each other largely, thereby maintaining the gain around the feedback loop reasonably constant, and ensuring good feedback stability under all conditions of varying r.f. output.

The 20 kc/s modulation percentage is also constant regardless of the power control setting due to the presence of a stabilizing neon bulb NE across the 20 kc/s output circuit in the modulator, serving as an indicator at the same time.

Servicing of the modulator

The modulator cabinet can be opened up for inspection by removing the bottom and the front panel, which are held in place by a number of sheet metal screws. Note that one of these screws is slightly longer than

the others and that it has to be used for the hole directly beneath the neon indicator in the front panel. The knob on S1, designated "MICR.SENS." has to be removed also.

With panels taken off, and the knob on S1 eventually replaced, the equipment is in full working condition. The left-hand part of the cabinet holds units I, II, III, IV and V, which are embedded in expanded polyvinyl. To remove any of these units it is necessary to unsolder the wires connecting this particular unit, and to loosen 3 sheet metal screws at the outside of the cabinet, these screws being used to fix a clamping plate at the right-hand side of the 5 units mentioned.

Exchanging a particular component in one of these units is relatively easy when first of all its position has been located by consulting the component layout drawing to be found directly after the respective circuit diagram and bearing the same number with the suffix A.

The same holds for unit VI which is to be found slightly to the right of the center of the cabinet, and which can be taken out by unsoldering 12 connections and loosening 4 sheet metal screws at the outside of the cabinet.

At the extreme right-hand side of the cabinet a bank of 20 condensers C36, C37 and C38 can be found, which can be taken out by loosening 3 metal screws at the outside of the cabinet.

The control, panel can be inspected by taking out 2 sheet metal screws at the top of this panel, after which it can be bent back, hanging on the wires. The screening cap of switch S₁ can be taken off after removing two hexagonal nuts, thus giving access to resistors R₇₁ till R₇₇ inclusive.

Behind the control panel, but mounted in the cabinet, transformer T5 will be found.

A list of voltages, etc. to be used for comparison purposes in case of trouble is given hereafter.

Test data of modulator

```
Emitter V1
                    1,55 V
   99 .
         V2
                    1,50 V
         V3
   99
                    0,13-1,65 V (dep. on r.f. power)
         V4
                    0,58 V
         V5
                    0,27-0,2 V ("no speech"-"speech")
         V6
                    5,5 -0,4 V
                                  19
         V7
                    5,6 -0,7 V
  22
         V8
                    1.4-1.03 V
                                  99
         VII
                    1,25 V
         V12
                    1,12 V
  19
         V13
                    1.16 V
  99
         V14 & V15 0,35 V
  12
         V17 & V18 0,19 V
  99
         V21
                   13,7 V
Collector V1
                       3,3 V
           SA
                       3,4 V
  **
           V3
                       5,75-3,2 V ("no speech"-"speech")
           V4
                       1,8 V
  77
           V8
                       1,45-5,0 V
           VIS
                       3,6 V
           V13
  99
                       3,55 V
           V14 & V15
                      5,65 V
           V17 & V18 12,8 V
Junction R25 -R26
                      1,65 -0,32 V ("no speech"-"speech"
         R33 -R34
                      4,85 -4,75 V (
                                     78
                                            12
  77
                      3,3 - 3,4 V
         R28 -R29
  77
         R21 -C15
                      5,95 V
  77
         R60 -C31
                     6,25 V
  88
                     13,9 V
         R64 - D6
         R69 -R64
                    16,5 V
Connection VI-3
                          21,5 V
           VI-5
                          13,5 V
  19
           VI-7
                           0,47 V
  99
           V -2
                           6,45 V
           IV-6
                           1,5 V
  99
           III-2
                          6,5 = 72,5 V (dep. on r.f.
           VI-1 to VI-2 16,9 V R.M.S.
                                                  power)
```

```
Current through connection I-2 5,0 mA

" II-2 10,5 mA

" IV-2 5,5 mA

" V-3 25 - 140 mA ("no sp"-
"speech"

Collector current V19 & V20 60 mA ("no speech")

d.c. resistance of L1

" T3 primary 2 x 28,5 ohms

" " T3 secundary 37 ohms

" " T5 primary 2 x 0,28 ohms

" " T5 secundary 60 ohms
```

II.

THE TRANSMITTER

General

The transmitter supplies an r.f. output adjustable between the limits of 0,4 and 40 Watts, the frequency of which is crystal-controlled.

The use of r.f. - a.f. negative feedback decreases the microphony and hum level to a very low value. Amplitude modulation up to 70 percent is possible with the aid of the separate modulator.

The transmitter cabinet contains the necessary power supplies for the transmitter and the modulator.

Metering facilities are included for tuning and monitoring purposes.

Description of r.f. part of the transmitter (Fig. 11) The transmitter frequency is crystal-controlled by a quartz crystal X with a fundamental frequency of 14 Mc/s.

The quartz crystal is part of a tritet oscillator with tube V33, which also acts as a frequency tripler supplying a 42 Mc/s drive for the next tube V34, V34 again tripling the frequency to 126 Mc/s, whilst V35 in turn triples to the final frequency of 378 Mc/s. The r.f. power at this frequency is stepped up by cascaded straight amplifiers V36 and V37. Final r.f. power at a level of maximum 40 Watts is taken off by a coupling loop L16 and fed to antenna plug P7. A 50 ohms load will provide an optimum match. Circuits at frequencies of 14, 42 and 126 Mc/s are of the lumped-constant type, all circuits at 378 Mc/s are of the distributed-constant, electrical half-wave type, the capacity at the far end of the line being adjustable by an integrated compression-type teflonisolated condenser.

The r.f. voltage at the antenna plug P7 is rectified by diode V38 and is used for negative feedback and output power monitoring purposes.

The output power can be adjusted in 1,5 dB steps by switch S5 between the approximate limits of 40 and 2 Watts on the "high" position of S6 and of 8 and 0,4

Watts on the "low" position of S6. This power control is effected by variation of the screen grid voltage of V37 and of the screen grid voltage of V36 to a lesser extent. By means of test switch S4 and meter M2 the adjustment of all tuned circuits can be checked. The test positions from 1 to 6 indicate respectively V34 grid drive, V35 grid drive, V36 grid drive, V37 grid drive, V37 anode current and r.f. output voltage. The engravings near the holes in the front panel, giving access to the preset tuning controls of the screw or hexagonal nut type, correspond with the positions of the test switch to be used for each adjustment. Position 5 of the test switch serves no direct purpose in the tuning procedure but checks the input power to the output amplifier. Filaments of V_{34} , V_{35} , V_{36} and V_{37} each are seriesconnected for a 12,6 V. filament supply, the filaments of V33 and V38 being adapted to this voltage by seriesresistors.

Description of transmitter power supply (Fig. 10) The transmitter power supply is designed to deliver 12,6 V. a.c. at 2,7 A. for the filaments, 16,5 V. a.c. at an intermittent current of 2 A. for the modulator and 350 V. d.c. at a maximum of 350 mA as the transmitter h.t. Switch S7 enables power transformer T8 to be fed by either 110 V or 220 V at 50 - 60 c/s. Switch S3 connects or disconnects primary and secundary circuits of To in three combinations "off - fil .h.t.", indication being obtained by pilot lamps PL1 and PL2. Fuses F1 and F2 protect the primary circuit and the secundary h.t. circuit against overloads. Plug P6 interconnects transmitter and modulator. It carries the 16,5 V a.c. for the modulator supply, the modulation voltage, the feedback voltage, and a safety interconnection presenting the application of h.t. voltage to the transmitter when the interconnecting cable is not plugged in at both ends. The modulation voltage supplied by the modulator is connected in series with the h.t. supply to the r.f. output amplifier anode.

The rectifiers are connected in a single-phase voltage-doubling circuit.

Hum reduction is effected in a slightly unusual way by means of power transistors V_{31} and V_{32} in the negative h.t. lead between first and second smoothing condensers.

The internal dynamic collector-to-emitter resistance of transistors V₃₁ and V₃₂ is increased appreciably by current feedback with resistors R₁₃₀ and R₁₃₁ in the emitter leads.

The base voltages necessary for proper working conditions of transistors V31 and V32 are supplied by transistors V29 and V30 connected as cascaded emitterfollowers in order to increase the base input resistance.

The input voltage should contain no a.c. component and is derived from the voltage drop across power transistors V31 and V32 with a voltage divider R_{136} , R_{137} and R_{138} , eliminated by condensers C_{69} and C_{70} . The whole circuit shows a high dynamic resistance, in this case to be compared with several tens of Henrys of conventional smoothing choke.

Switching on the h.t. might impose a severe surge voltage on the transistors due to the charging current of the smoothing condensers C67 and C68, flowing through transistors V31 and V32 which are at that very instant almost non-conducting because of the absence of a suitable d.c. voltage at the base connection of Vac:

This surge voltage is limited to a safe value within the maximum ratings by Zener diodes D₁₇, D₁₈, D₁₉ and D₂₀. These diodes normally are non-conducting, but become conducting rapidly when the voltage across this combination rises to more than 25 V, thus almost instantaneously charging condenser C₆₉ and thereby bringing transistors V₃₁ and V₃₂ in a highly conductive state which prevents the buildup of a dangerous voltage across them.

Servicing of the transmitter

Access to the interior of the transmitter is obtained by loosening the sheet metal screws holding the top panel and/or the bottom panel. Taking off these covers leaves the transmitter in working order although the tuned circuits will be detuned and unwanted interaction between them will occur, making it advisable to use only low settings of the output power control.

With the top panel taken off access is obtained to tubes V33, V34, V35 and V38, the quartz crystal X, power transformer T8, the pilot lamps and to the

control panel.

The control panel can be turned aside after taking out a number of metal screws and taking off the knobs, access now being possible to plugs P5 and P6, meter M2, switch S7, fuse holders F1 and F2, rectifiers D15 and Din and the transistorized smoothing circuit. Taking off the bottom panel gives access to the switches Sz. S4. S5 and S6 as well as to the wiring of the frequency multiplier stages and to the r.f. amplifier tubes. To remove either V36 or V37 the tuned anode circuit has to be taken out first. Therefore the knurled nuts of the anode clips are loosened with the aid of a small hexagonal steel tool to be found in the r.f. power amplifier compartment of the transmitter cabinet and being held there by two clips. This tool fits into holes in the knurled nuts and eases their handling. After loosening these knurled nuts a metal screw holding the tuning condenser end of the anode line in a slotted hole is loosened about two turns and the entire tuned circuit can be removed, after which the respective tube is ready for handling.

Due care should be taken not to exert dangerous stresses to the anode seals of the r.f. tubes during replacement.

A list of voltages, etc. to be used for comparison purposes in case of trouble is given hereafter.

Test data of transmitter

(Values dependent on r.f. output power)

Mains voltage 220 V R.M.S. 50 c/s Transformer secundary h.t. 164 V. R.M.S. fil. 13,0V R.M.S. mod. 16,9V R.M.S.

Rectified h.t. voltage 350 - 382 V Collector voltage $V_{31} \& V_{32} = 6,1-11,1 \text{ V}$

Voltage at V33 screen grid 108 - 117 V

" " V34 " " 146 - 150 V

" " V35 " " 165 - 178 V

" " V36 " " 100 - 117 V

" " V37 " " 12 - 202 V

Voltage drop across R142 55 - 60 V

" " R146 19 - 20,5 V

" " R150 7,2 - 7,6 V

" " R155 4,0 - 5,0 V

" " R161 6,5 - 72,5 V

d.c. resistance of T₈ primary 3,1 and 3,4 ohms
"T8 secundary (h.t.) 6,0 ohms
"T8 secundary (fil.) 0,25 ohms
"T8 secundary (mod.) 0,32 ohms

III.

THE RECEIVER

General

The base station receiver consists of a r.f. detector and an audio amplifier, permanently connected to each other by means of a coaxial cable.

The audio circuits contain a switching circuit which breaks up the amplifier chain when the base station transmitter is modulated. This is in order to prevent annoyance of the operator by his own voice at a deafening sound level and very badly distorted.

The receiver is fully transistorized as far as the audio part is concerned and is self-contained with respect to power demands by dry batteries which will last for a considerable time due to the low power drain.

Description of the circuit

Detector

The circuit diagram of the detector is given in Fig. 13.

The rectifier Dg is a silicon crystal diode. The detector incorporates a continuously variable attenuator. By turning the outer tube the attenuation can be adjusted. Attenuation is increased by mismatching the matching section before the crystal. In the position of minimum attenuation the detector is matched for the power level which gives optimum signal to noise ratio. A matching circuit is chosen which at the same time performs the function of low pass filter in order to cut out harmonics of the transmitter which would otherwise cause a bad minimum local oscillator level.

The V.S.W.R. of the detector at minimum attenuation and a crystal current indication of 10 scale divisions (= 0,2 mA) is 1,07 with a bandwidth of 110 Mc/s between points of V.S.W.R. 2,0.

The maximum attenuation is 29 dB.

The second harmonic reduction is 20 dB.

Audio amplifier

During reception perbds at the base station the

signal from the remote point, detected by crystal detector D₉, is amplified by transistor V₂₃ after which it passes, via diode D₁₀ and transformer T₆ through the audio switch on to the volume control R₉₈.

The signal is amplified further by transistors V26 and V27 and transfered to a low impedance level by

emitter-follower V28.

Negative feedback has been applied over transistors V26 and V27, whilst C55 in the feedback path increases gain at the lower audio frequencies in order to make up for some of the deficiencies of the microphone used in the passive element.

During base station reception intervals transistor V25 is non-conducting, which renders diodes D10 and D11 in a conductive state, whilst diodes D12 and D13 are non-conducting. Therefore the attenuation of the

audio signal is negligible.

Emitter resistor R82 of transistor V23 is left unbypassed for audio frequencies, but condenser C41 boosts the 20 kc/s input signal to be expected during base station speech transmission intervals. This 20 kc/s signal, being radiated as a modulation of the transmitted r.f. signal during said intervals is taken from V23 collector and fed to the 20 kc/s amplifier V24. The collector load of V24 consists of a 20 kc/s tuned circuit C45 - T7 and a detector D14. the resulting d.c. voltage occurring during said intervals renders transistor V25 conducting, which brings the audio switch in a highly attenuating position. In this case shunt diodes D12 and D13 across T6 primary are conducting whilst series diodes D10 and D11 are non-conducting.

The d.c. current from the detector crystal D9 is indicated by meter M1, shunted to a f.s.d. of about

2 mA.

The audio output from the receiver is fed to two headphone receptacles in parallel, the grounded side of which is indicated by a black dot.

Servicing of the receiver
The silicon crystal detector can be reached by turning the rear cap of the crystal holder counterclockwise

and taking it off. Access to the interior of the audio part of the receiver is obtained by removing a number of sheet metal screws holding the front and bottom covers of this unit and by taking off the knob of volume control R98 and switch S2. The position of components may be located with the aid of the component layout drawing l2A. Batteries are contained in the metal cylinder alongside the cabinet and access to them is obtained by turning the cap counterclockwise, after which the batteries will slide out. Before putting in new batteries it is advisable to safeguard against corrosion by covering them with spray-on plastic, taking care not to isolate the contact points of the batteries.

A list of voltages, etc. to be used for comparison purposes in case of trouble is given hereafter.

Test data of receiver

-	-	00210			
Battery	voltage current current		nodulated transmitt	4,3 Ner) 3,8 ner) 4,8 ner)	mA
Emitter n n n n	voltage n n n n	V23 V24 V25 V25 V26 V27 V28	(unmodulated transm. (modulated transm.	0,34 1,74 m.) 0,03 0,20 0,81 0,72 0,55	VVVV
11	11	V2	5(unmodulated trans 5(modulated transm.	1,8 V sm.)3,75 .) 0,3 V 2,05	V
Voltage		(unmo	R94- R95 odulated transmitte	3,1 V	
Voltage		(modi	ulated transmitter)	2,05	V
Voltage	ac junet	(modu	D ₁₄ - C ₄₇ Llated transmitter)	0,6 V	
Primary Secundar Primary Secundar	y resist resistan	ance ce Tr	T ₆	190 ohms 250 ohms 24 ohm 16 ohm	S

IV. AN TENNA AND DUPLEXER

The duplexer

The duplexer consists of a coaxial directional coupler and two tuners.

The configuration is clearly shown in the attached photograph (Fig. 14A) and the circuit diagram is given in Fig. 14.

The characteristics of the directional coupler at a frequency of 378 Mc/s are:

Coupling: -5,8 dB Insertion loss: 1,7 dB V.S.W.R.: 1,02 Directivity: -31,4 dB

Isolation between transmitter and detector arm:

37,2 dB

The tuners are especially designed for the purpose, the main advantages over a normal double stub tuner being:

1. No sliding contacts, preventing severe crackling noise in the receiver during tuning procedure.

- 2. Large bandwidth in order to reduce detection of frequency modulated components from the transmitter.
- 3. Smaller size.

In case of damage to the duplexer replacement and realignement should preferably be carried out in the laboratory.

The antenna

The antenna is a 2 bay 4 element Yagi-array. The spacings between elements and the element lengths were optimized with respect to gain and front to back ratio. Thereby the total length of the antenna was kept within 60 cm, dictated by the available storage space.

The characteristics of the antenna are:

Gain: 15 dB
Front to back ratio: 20 dB
Centerfrequency: 378 Mc/s
Bandwidth: 30 Mc/s

A closer inspection of the photographs (Fig. 2 and 3)

of the Operational Manual will show how the antenna is constructed.

Both Yagi-arrays are in broadside configuration and interconnected by a coaxial T, which incorporates two 1/4 wavelength transformers in order to provide a 50 ohm match at all three terminals.

The Yagi-arrays are individually matched with a coil. The broadside configuration requires the Yagi-arrays to be non-identical with respect to the connection to the coaxial line, but to have the connections transposed, whereby the center conductors are connected to the elements at the same side of the antenna in the assembled condition.

For the Yagi-arrays and the coaxial T, "General Radio" panel connectors type 874 - PB and basic connectors type 874 - B were used respectively.

When servicing to one of the connectors becomes necessary, careful attention should be paid to the instructions contained in the "Assembly instructions" for General Radio connectors, included in this manual.

General The passive element contains a dipole antenna, a silicon crystal detector, a junction unit, a pair of headphones, a three-stage transistorized audio amplifier and a microphone. The r.f. field set up by the transmitter activates the dipole and detector, the resulting rectified voltage being used to supply the d.c. power needed for operation of the audio amplifier. The microphone voltage is amplified in the audio amplifier and the last transistor is connected as a direct load across the rectifier output, the value of which load is modulated by the amplified microphone signals. The load variations on the crystal detector cause the r.f. impedance offered to the dipole to change accordingly. This means that the amount of power absorbed or reflected by the dipole is modulated also. The d.c. voltage from the silicon detector also contains an a.c. component when the transmitter at the base station is amplitude-modulated. This a.c. component is fed to a pair of headphones via a junction. unit. These headphones will reproduce the speech modulation on the base station transmitter. When the special features of carrier-pigeon operation are not essential, the headphones and the junction unit can be omitted, after which normal Easy-Chair operation is possible.

Circuit description of the audio part
The audio amplifier has been molded in opaque epoxy
resin. Connections are made by means of colourmarked miniaturized receptables.
The circuit diagram is given in Fig. 15.
All transistors are operating in the grounded emitter
way, the coupling impedances for transistors V33 and
V34 being inductances L17 and L18. The load impedance
as seen by the output transistor V35 is the internal
impedance of the rectifier d.c. output circuit.

This rectifier output circuit at the same time delivers the d.c. supply power necessary for operation of the transistors. The amplified microphone voltage however is at the same time superimposed on this d.c. voltage and has to be removed before the d.c. voltage can be used to supply transistors V33 and V34. This filtering is done with inductances L19 and L20 and condensers C100 and C101. The power requirements for the audio amplifier had to be as low as possible and therefore no temperature compensation or frequency characteristic corrections have been included. As a result the characteristics of the passive element are to a certain amount governed by circumstances, but normal ranges of temperature and component tolerances will give no rise to any trouble. A pair of headphones is connected, via a c.d. blocking condenser C103, across the wires connecting the audio amplifier and the detector. These headphones should be of the high-impedance variety. The amplified passive element microphone voltage can also be heard in these headphones and might give an experienced operator useful indications about the activating power level of the passive element. When the headphones are close to the passive element microphone, accoustic feedback will occur, producing a sustained note which might be helpful during initial setting-up trials at the base station.

Description of the r.f. part

The r.f. part consists of a dipole and a crystal rectifier. The rectified current is fed to two miniaturized receptacles via r.f. chokes.

The crystal rectifier is a cartridge type crystal CS2A (British Thomson Houston). Other types of r.f. crystal rectifiers such as the 1N22 can be used as well, whereby attention should be paid to the polarity. The dipole is made longer than half a wavelength to obtain a better match to the impedance of the crystal. The inductance due to the increase in length at the same time matches the stray capacitance of the crystal. The nature of the substance wherein the dipole is suspended determines the optimum length of the dipole. In general it can be said that the optimum length

of a dipole suspended in a non-conducting substance with relative dielectric constant K = 1 VK the optimum length in free space. The dipole is made of insulated wire. This has the advantage that the dipole can be bent somewhat, whereby the performance will not be reduced seriously. The insulation reduces attenuation by objects to which the dipole is mounted. The crystal rectifier can be replaced easily.

The red dot on the perspex housing marks the positive

receptacle.

Whenever soldering near the crystal is necessary, care should be taken, not to heat the crystal or, even better, the crystal should be taken out. Crystal rectifiers will be damaged by mishandling or exposure to strong radio frequency fields. Care should be taken therefore, to keep the dipoles away from the transmitter antenna when power is switched on. In addition it is recommended to keep the dipole perpendicular to the rods of the transmitting antenna when the dipoles are not in use.

Modulator components, unit I, Fig. 1

V2

V3

V4

12

22

12

```
22.000 ohms.
                                                                 10%
                                                         1
                                                            W
                      Erie.
      resistor,
Rl
                                                         The property I plante person of I
                                    8.200
                                               78
                                                            W
R2
                                                                   7.9
                                    3.900
                                               17
                        77
R3
           79
                                                            W
                                                                   99
                                    2.200
                         • •
                                               80
           19
                                                            W
R4
                                                                   智
                                    3.900
                         17
R5
           79
                                                             W
                                                                   19
R6
                         咿
                                  22.000
                                               49
                                                            W
                                                                   17
                         17
                                    8.200
R7
           97
                                                             W
                                                                   19
                         19
                                       680
                                               **
R8
           99
                                                             W
                                                                   19
                         19
R9
           77
                                    1.200
                                                             W
                                                                   99
                        99
                                    1.200
                                               ..
Rio
                                                             W
                                                                   79
           79
                         79
                                    3.900
                                               11
R11
                                                            W
                                                                   TŶ
                         19
           29
                                  39.000
                                               99
R12
                                                            W
                                                                   9.7
                                                         न ग्रम्थाय न ग्रम्थायग्रम्
                         97
                                 220.000
                                               99
R13
           99
                                                            W
                                                                   TE
R14
                         17
                                    8.200
                                               77
                                                             W
                                                                   19
R15
           99
                         22
                                    1.200
                                               99
                                                            W
                                                                   19
           17
                         22
                                       680
                                               99
R16
                                                            W
                                                                   79
R17
                         **
                                  27.000
                                               79
                                                            W
                                                                   99
           24
                         99
R18
                                    4.700
                                               17
                                                            W
                                                                   **
                         79
R19
           12
                                    2.700
                                               19
                                                            W
                                                                   +4
                         99
R20
           **
                                       390
                                               **
                                                            W
                                                                   99
           79
                         22
                                               99
R21
                                       100
                                                                   77
                                                            W
CI
                                                          V DCW
                                       1 mf
                                                        6
                                                                     electrolytic
                      Philips
       condenser
C2
                                     32
                                          17
                                                       3
                                                            19
           99
03
                            99
                                          **
                                       1
                                                       6
                                                            29
           99
                                                       3
CA
                            19
                                     32
                                          99
                                                            79
                                                                           99
           99
C5
                       Wima
                                       0.01 mf
           83
                                                    500
                                                          VDCW
                                                                     paper
                       Philips
C6
                                       8
                                          mf
                                                      25
                                                            **
                                                                     electrolytic
           99
C7
                            11
                                       8
                                          28
           77
                                                      25
                                                            17
                                                                           **
CA
                                     25
           99
                                          99
                                                      25
                                                            99
                                                                           99
Cg
           27
                                     25
                                          99
                                                      25
                                                            +9
                                                                           99
C10
           25
                       Wima
                                       0,1 mf
                                                    500
                                                            98
                                                                    paper
C11
           99
                       Philips
                                       1 mf
                                                       6
                                                            **
                                                                     electrolytic
012
                                          P4
                                                      25
           99
                                       8
                                                            99
C13
                       Wima
                                       0.05 mf
           77
                                                    500
                                                            17
                                                                    paper
C14
                      Philips
           79
                                       1 mf
                                                       6
                                                            19
                                                                    electrolytic
C15
           17
                            19
                                     50
                                          17
                                                      12,5"
VI
                                         OC71
       transistor Philips
```

0071

0071

0C71

99

29

99

Modulator components, unit II, Fig. 2

```
10 %
R22 resistor
                                   ohms
                                           10
                  Erie
                           5.600
                                             W
                                           1
                         470.000
                                             W
                                                    99
                    19
R23
                                           1 Hardardardardarda 1 riandardada
                         390.000
                                                    77
                    19
R24
                                                     78
                    19
                           4.700
R25
                    神
                           3.300
                                   22
                                                     99
R26
                                                     27
                    77
R27
                            1.800
                    19
                              470
R28
                    79
                              330
R29
        22
                              120
R30
        99
                    19
                               27
R31
                    79
                         220,000
R32
        99
                            1.500
                                                     99
        **
                    17
R33
                                                     29
                    22
                            4.700
R34
                    27
                            1.000
                                                     99
        99
R35
                               27
                                                     99
        77
R36
                                     mf 500 VDCW
Cl6 condenser
                    Wima
                                                      paper
                             0,05
C17
          99
                      19
                                     79
                                         500
                                                 77
                                                         19
                      99
                             0,1
                                         500
                                                **
                                                        99
           29
                                    77
C18
                                         500
                                                      mica, 1%
C19
          99
                    Ducati 0,0127"
                                                99
V 5
     transistor Philips
                                  OC44
V6
                         99
                                  OC44
V7
           99
                         **
                                  0071
V8
           11
                                  0071
Va
                         99
                                  0071
V10
           79
                         77
                                  0073
Ty
     transformer
                      Philips Ferroxcube core D18-12
                      airgap 0,2 mm
                      prim. 230 turns 0,2 mm en. L=6,1 mH
```

T2 transformer Philips Ferroxcube core D18-12 airgap 0,0 mm prim. 225 turns 0,22mm en. L=50 mH Sec. 30 turns 0,22mm en.

sec.

50 turns 0,2 mm en.

Modulator components, unit III, Fig. 3

```
10%
                                     W
                                    - partonion
R37 resistor
               Erie 3.300
                             ohms
                                     W
                                            99
                     3.300
                             99
                 99
       99
R38
                                      W
                     2.200
R39
                                    1 W
                     12.000
                             99
R40
                                    1 W
                     47.000
       99
                 **
R41
                                    1 W
                 99
                     82,000
                              99
       11
R42
                                    1 W
                                            98
                      3.900
        99
R43
C20 condenser Wima 0,03 mf 500 VDCW
                                              paper
                                   25
                                              electrolytic
               Philips 25
                             19
                                        **
C21
                                              mica, 2%
                        220
                              mmf 500
C22
                        150
                                   500
        77
C23
    germanium diode Philips 0A81
DI
```

D1 germanium diode Fillips OAS1
D2 " " " OAS1
D3 " " " OAS1
D4 " " OAS1

T3 transformer laminated mu-metal core core area 7 x 7 mm², airgap 0,0mm prim. 2 x 600 turns bifilar wound, 0,14 mm en. sec. 600 turns 0,14 mm en.

enclosed in mu-metal screening can, wall thickness 1 mm.

DRIVER AMPLIFIER (IV)

Modulator components, unit IV, Fig. 4

```
10%
                                                                                                                                                                                                                    I classication and a fortantiation and a forta
                                                                                        Erie
                                                                                                                              15.000 ohms
R44 resistor
                                                                                                                                                                                                                                                            **
                                                                                                                                     5.600
R45
                                                                                                                                     1.800
                                                                                               11
                                             97
R46
                                                                                               19
                                                                                                                                     1.500
R47
                                                                                                                                                 680
                                             77
R48
                                                                                                                                                                                                                                                            **
                                                                                                                               10.000
                                                                                                11
R49
                                                                                                                                                                                                                                                            28
                                                                                                                               10.000
                                                                                                **
R 50
                                                                                                                                                                                                                                                             19
                                                                                                                                     3.300
                                             49
                                                                                                19
 R51
                                                                                                                                                                                                                                   W
                                                                                                                                                                                                                                                             19
                                                                                                                                     1.500
 R52
                                                                                                                                                                                                                                   W
                                                                                                                                                                                                                                                             99
                                                                                                                                                  680
                                              17
 R53
                                                                                                                                                                                                                                   W
                                                                                                99
                                                                                                                                                  180
                                                                                                                                                                                  77
 R54
                                                                                                                                                                                                                                   W
                                                                                                 **
                                                                                                                                     4.700
                                                                                                                                                                                  99
 R55
                                                                                                                                                                                                                                   W
                                                                                                                                                                                  29
                                                                                                                                     4.700
 R56
                                                                                                                                                                                                                                   W
                                                                                                 22
                                                                                                                                                   560
                                                                                                                                                                                  99
 R57
                                                                                                                                                                                                                                   W
                                                                                                 79
                                                                                                                                                                                  99
                                                                                                                                                   820
  R58
                                                                                                                                                                                                                                   W
                                                                                                 99
                                                                                                                                                                                  19
                                                                                                                                                   820
  R59
                                                                                                                                                                                                                                   W
                                                                                                                                                                                                                                                              11
                                                                                                                                                                                  77
                                                                                                                                                         39
   R60
                                                                                                                                                            56
                                                                                                 11
                                                                                                                                                                                                                                   100
   R48A
                                                                                                                                                                                                                                         VDCW electrolytic
                                                                                                                                                                                                                        3
                                                                                                                                          32
                                                                                                                                                                                        mf
                                                                                          Philips
                           condenser
   C24
                                                                                                                                                                                               99
                                                                                                                                                                                                                        3
                                                                                                                                                                                                                                                 99
                                                                                                                                            32
   C25
                                                                                                                                                                                                                                                                                                    **
                                                                                                                                                                                                                        3
                                                                                                                                                                                               19
                                                                                                                                             32
                                                                                                       97
   C26
                                                                                                                                                                                                                 25
                                                                                                                                                                                                                                                 99
                                                                                                                                             25
                                                                                                                                                                                               7.7
                                                                                                       79
    027
                                                                                                                                                                                                                  26
                                                                                                                                             25
                                                                                                                                                                                                                                                  12
                                                                                                       99
                                               **
    C28
                                                                                                                                              0,0174
                                                                                                                                                                                                             500
                                                                                                                                                                                                                                                                           paper
                                                                                           Wima
    C29
                                                                                                                                                  0,05
                                                                                                                                                                                                                                                  17
                                                                                                                                                                                                             500
                                                                                                        19
                                               99
   C30
                                                                                                                                                                                                                                                                           electrolytic
                                                                                                                                                                                                                  12,5 "
                                                                                           Philips 50
                                                99
    031
                                                                                                                                                                     0071
                                                                                                       Philips
  V11
                            transistor
                                                                                                                                                                      0071
  V12
                                                                                                                    77
                                                                                                                                                                       0071
  V13
                                                                                                                                                                       OC71
                                                                                                                     99
                                                19
   V14
```

L1 inductance Philips Ferroxcube core D14-8
air-gap 0,2 mm 220 turns 0,13 en.
L = 3,6 mH

V15

0071

20 kc/s POWER AMPLIFIER (V)

Modulator components, unit V, Fig. 5

 R_{61} resistor Erie 270 ohms $\frac{1}{8}$ W 10%

C32 condenser Philips 820 mmf 500 VDCW mica 2% C33 " 25 mf 25 " electrolytic C34 " 25 mf 25 " "

V16 transistor Philips OC16

D5 silicon diode Intermetall Z6 ZENER 6,5 Volts

T4 transformer Philips Ferroxcube D36-22
air-gap 0,15 mm
prim. 30 turns, 0,4 mm en.
sec. 300 turns tapped at 120 turns,
0,28 mm en. L=62mH.

Modulator components, unit VI, Fig. 6

R62	resistor	Erie	82	ohms	1 W	10%	
R63	n	24	82	77	1 W	19	
R64	11	11	180	77	1 W	11	
R65	11	11	2.200	17	1 W	n	
R66	11	11	82	11	W W W W W W	11	
R67	11	11	12.000	11	ĩ W	11	
R68	н	Philips	470	11	NEG.	TEMP. COEFF.	
V17	transisto	or Phil	ips O	072			
V18	11	11		372			
V19	11	17	01	016			
V20	11	**	0	C16			
V21	***	11	01	C76			
V22	n	11	01	C16			

D6 silicon diode Intermetall Z6 ZENER 6,5 Volts
D7 " Z7 " 7,5 Volts
D8 selenium bridge rectifier Siemens, modified for
30 V - 1,2Amps.

Modulator components, unit VII, Fig. 7

```
i W
                                         10%
R69 resistor Erie
                        330 ohms
                                   1 ₩
                             17
                                          +6
                  11
                        820
        11
R70
                                   W W
                         10
         **
R71
                                   W W W W W W
                                     W
                  19
                         18 "
        92
H72
         77
                         27
R73
                         56 "
                  22
R74
                        100 "
        19
R75
                                         14
                        330 "
         11
R76
                                   å W
                                         **
                       1000 "
         99
R77
```

0.03 mf 500VDCW paper C35 condenser Wima 100 25 m elec-Philips 99 036 25 " trolytic 100 ** 037 25 " 18 x 100 97 C38

NE neon indicator, Philips, operating voltage 90 VDC

S1 switch, 1 contact, 11 positions

Pl plug, Amphenol, coaxial, microphone type

P2 plug, ELCOM, 8-way, male

T₅ transformer, laminated iron core, core area 30 x 20 mm²

air-gap 0,25 mm
prim. 2 x 75 turns, 2 x 0,6 mm en.
sec. 1400 turns, 0,25 mm en.
Lsec. = 2,1 H at 200 mA d.c.

BLOCK-DIAGRAM MODULATOR AND TRANSMITTER

Transmitter power supply components, Fig. 10

```
R110
          resistor VITROIM
                                                           10%
                                         47
                                              ohms
                                                        W
  111
                        Erie
                                     2.200
                                               p.
                                                        W
                                                                 Aw in par.)
                       VITROHM
  112
                                                        W
                                                             "4(2 x 10 ohms
                                                             " +(3 x 27.000;
  113
                       Erie
                                    10.000
                                                        T
              17
  114
                                     8.200
                                                     1
                                                        7
                                                                 Thms lw in,
                                               ++
R115
                                   10.000
                                               神
                                                        W
                                                             **
                                                                         (par.)
              69
  116
                          11
                                   12.000
                                                     1
                                               19
                                                        W
  117
              29
                          79
                                   15.000
                                                        W
                                                             17
              **
  118
                                   12.000
                                               17
                                                        W
  119
                                     8.200
                                                        W
R120
                                     6.800
                                                        W
                                               +7
                                                     1
                          **
  121
                                     5.600
                                                     1
                                               **
                                                        W
                          17
  122
                                    4.700
                                               79
                                                     1
                                                        W
                          99
  123
                                     6.800
                                                     1
                                                        W
                                               77
                                                            99
              12
                          **
  124
                                   56.000
                                                     1
                                                        W
                                                            72
                                               11
R125
              11
                          **
                                   47.000
                                                        W
                                               ++
                                                     1
                                                            72
              TŶ
                          99
                                                        W
  126
                                   47.000
                                                     1
              11
                          29
  127
                                 150.000
                                                     1
                                                        W
                                                            11
              11
  128
                          77
                                                        W
                                 180.000
                                                     1
                          79
  129
                                 150.000
                                                     1
                                                        N
                                               99
R130
                          **
                                                        W
                                         12
                                               99
                          77
  131
                                         12
                                               79
                                                     1
                                                        W
                          99
  132
                                                     1,21,21,2121
                                                        W
                                    5.600
                                               17
                                                            **
  133
                          77
                                       680
                                                       W
                                                            12
                                               77
                          78
  134
                                                        W
                                    6.800
                                                            79
R135
                          17
                                                        W
                                    6.800
                                               **
                                                            99
  136
                          99
                                  22.000
                                                        W
                                                            77
  137
                                                       W
                                  39.000
                                                     1
                                                            **
              99
  138
                                  47.000
                                                     1
                                                        W
                                                            11
C60
       condenser Philips
                                    50 mf
                                             350
                                                   VDCW.
                                                            electrolytic
 61
                                  100
                                             300
                                                     **
 62
                         98
                                  100
                                             300
                                                    77
                                                                  99
 63
             11
                         **
                                  100
                                             300
                                                    79
                         99
 64
                                    50
                                        19
                                             350
                                                    77
C65
                         19
                                    50
                                             350
                                                    99
             79
 66
                         77
                                    50 "
                                             350
                                                    15
 67
             77
                         11
                                  100 "
                                            300
             99
 68
                         99
                                  100
                                       17
                                            300
                                                    17
                                                                  99
 69
             **
                                     4
                                       79
                                              50
                                                    99
C70
             99
                         77
                                     4 "
                                              50
                                                    79
```

```
V.30
                             0076
V31
          79
                      77
                             0016
          **
V32
                     99
                             0016
D15
     selenium rectifier, Siemens, 3 x E250Cl30 in
D16
                                           " parallel
     silicon diode, Intermetall Z7 Zener 7,5 V
D17
D18
                                  27
D19
                                  26
                                            6,5 V
         11
D20
                           11
                                  7.6
                                            99
Mo moving coil meter, ERNEST TURNER, 500 micro Amp.
                                       f.s.d., 66 ohms.
P5
    plug, BULGIN, 2-way, male
Pa
           ELCOM 8-way, female
PL; pilot lamp, Philips, 12 V - 2W.
PL2
    fuse, 4 Amps for 110 V operation, 2 Amps for 220 V.
Fi
                                              operation.
F2 fuse, 1,5 Amps
    switch MALLORY 4 contacts 3 positions
S3
S4
                      2
                                   6
                                         **
      99
               **
55
                      1
                           99
                                  11
                                         79
S6
            BULGIN
                      1
                           19
                                   2
                                         11
S7
              25
                      2
                           17
                                         99
                                   2
   transformer, laminated iron core, core area 60 x
Ta
                  air-gap = 0.0
                                                 25 mm2
                  prim. 1: 336 turns, 0,7 mm en.
                        2: 336
                                  11
                                       0,7 mm en.
                       1: 520
                                       0,6 mm en.
                  sec.
                                  **
                        2: 44
                                       4 x 0,5 mm en.
                        3: 54
                                 **
                                       2 x 0,7 mm en.
```

Transmitter power supply components, Fig. 10

0073

transistor Philips

V29

(continued)

Transmitter components, Fig. 11

```
150.000 ohms 1 W 10%
R139 resistor Erie
                                          W
R140
                               56
                         150.000
                                        1
                                         W
 141
                                        1
 142
                           6.800
                                          W
                                        1
                                         W
 143
                          56.000
                                        121
                              15
                                          W
 144
                         100.000
                                         W
R145
                                        112121
                   99
                                          W
                             560
 146
                VITROHM
                                          W
                          56.000
 147
                Erie
                               15
                                          W
 148
                                          W
 149
                          82.000
                                        1
                                          W
R150
                             150
                                          W
 151
                               22
                                        1
 152
                                          W
                          56.000
                                        1
                                          W
 153
                          56.000
                                        1
                           2.700
                                          W
 154
                                        1 W
                             100
                                              17
R155
                                        1
                          22.000
                                          W
                                              99
 156
                                        1
 157
                          22.000.
                                          W
                                              **
                                        1 gW
                                               (3 x 10 ohms,
 158
                                                   W in par.
 159
                           1.200
                                        1
                                         W
                                        1 W
                               10
R160
                                        1 · W
 161
                          27.000
                                        10
                               15
                                          W
 162
                 PAINTON
                               22
                                        4 W
                                              "5%. wire-wound
 163
                                        2 W
                                              "10% [82 and 100
                              45
R164
                 Erie
                                               ohms lW in par
C71 condenser Philips
                           33
                                    500 VDCW 2%. mica
                              mmf
                TCC
                         1500
 72
                                               ceramic
                                                          (one
                Philips
                                               butterfly half
 73
                           8
                                               ceramic Tused
                TCC
                         1500
 74
C75
                         1500
                Philips
                                               butterfly
 76
                            4
 77
                            1,6 "
                compression type,
                                     integrated with L11
 78
                                                        L12
 79
                                                        L13
080
 81
               Rosenthal
                                   50 OV DCW
                                             feed-through
                           600mmf
 82
 83
               Rosenthal
 84
               Philips
                                   modified trimmer
C85
                             5 "
```

/ctnd.

Transmitter components, Fig. 11 (Continued)

```
C86 condenser Philips 5 mmf modified trimmer
                                              feed-through
        77
              Rosenthal 600
                               12
                                   500 VDCW
87
                                        19
88
                          600
                                               17
                         600 "
                                        19
                   **
 89
              Philips
                         220 "
C90
       99
                                              ceramic
                                                 **
                   +9
                         220
 91
                        1500 "
                                                 **
 92
       99
              TCC
                                   99
                                                 17
                        1500
93
       **
               **
                                                 18
                        1500 "
              19
                                   11
                                        **
94
       77
                                              feed-through
                               72
                                   77
                                        **
              Rosenthal 600
       **
C95
                                   11
                          600 "
                                        **
96
                                    19
                                        **
                                                17
                11
                          600
       77
C97
         Philips E 180 F
                               = 6688
V33 tube
                   QQE 03/12 = 6360 = CV 2798
V34
                    QQE 03/12 = 6360 = CV 2798
V35
                    QQE 03/20 = 6252 = CV 2799
V36
              **
                    QQE 06/40 = 5894 = CV 2797
V37 "
V38
                   9004
          R.C.A.
```

X quartz crystal, STABILIX, 14Mc/s

P7 plug, GENERAL RADIO, 874 - PB

BOTTOM VIEW RECEIVER

DETECTOR

```
Receiver components, Fig. 12 & 13
```

```
39
                                 ohms
                                            W
                                                10%
     resistor Erie
                                  79
                                           W
                                                 77
                       33.000
 79
                                         W
                         4.700
                                                 77
         95
 80
                                            W
                                                 **
                         1.500
                                  17
 81
                                            W
                                                 22
         17
                           560
                                  17
 82
                                            W
                         3.900
                                  **
                                                  72
 83
         99
                                            W
                                                 77
                    **
                       10.000
 84
                                            W
                                                 17
                       10.000
R85
                                            W
                    79
                        4.700
                                                 99
 86
         11
                                            W
                    44
                         3.900
                                  11
 87
                                  98
                                            W
                                                 99
                    29
                       47.000
 88
                       27.000
                                         1 101 4 101 4 101 01010
                                            W
                                                 99
                                  **
 89
                         2.700
                                  11
                                            W
                                                  99
R90
                     11
                                            N
                                                  79
         17
                         4.700
 91
                       10.000
                                  11
                                            W
                                                  **
         19
 92
                                            W
                         3.300
 93
                                            W
                         3.300
                     **
 94
                         8.200
                                            W
                                                  27
R95
                            100
                                            W
                                                  24
 96
                            100
                                  92
                                            W
                                                  **
 97
 98 potentiometer, LESA, 25.000 ohms, mechanically linked
       resistor Erie 120.000 ohms
                                                               with Sa.
                                                   10%
                                           1
                                              W
 99
                                            1
                                                    **
                           33.000
R100
                                               W
                                                    79
                            10.000
 101
                                               W
          97
                             4.700
 102
                                 33
                                               W
          19
 103
                          120.000
                                       77
                                               W
 104
                           33.000
                                       28
                                               W
R105
                             1.800
                                       99
                                               W
  106
                                               W
                                                    17
                            12.000
  107
                                            1
                                               W
                           82.000
  108
                           33.000
                                               W
R109
                                       44
                                              VDCW
                                                      electrolytic
C39
                   Philips
                                 1
                                      mf
                                            6
     condenser
                                25
                      25
                                            6
                                                99
C40
          99
                                 0,02"
 41
                   Wima
                                          500
                                                      paper
                                            6
                                                      electrolytic
 42
                   Philips
                                 1
                                            6
                                 1
                                                19
C43
                   TCC
                             3300
                                   mmf
                                          500
                                                      ceramic
 44
                                          500
                                                **
                                                      mica, 1%
 45
                   DUCATI 8000
                                                11
                                                      electrolytic
                   Philips
                                           25
                                 8
                                     mf
C46
```

Receiver components, Fig. 12 & 13

```
TCC
C47
    condenser
                                    500
                 99
                         4700
        **
 48
 49
                             1
                                mf
                                      6
                                              electrolytic
        99
                                mf
                                      6
050
                                      6
                  11
                             1
                                **
 51
        17
                            25
                                      6
                  19
                               **
 52
 53
                Wima
                            0.02"
                                    500
                                              paper
                                              electrolytic
                Philips
                            25
                                      6
 54
                            0,01"
                                    500
                                              paper
C55
                Wima
                                      6
                Philips
                            1
                                           79
                                              electrolytic
 56
                            25
                                      6
                                           12
 57
        79
                                      6
                            25
                                           17
                  19
 58
                                           11
                  77
                            25
                                27
059
                                    1 x 2"
    dry battery 1,5 Volts, size
B1
                                     NI WIN
                                        x 2"
B2
                    **
                                        x 2"
B3
                         19
V23 transistor Philips
                             OC71
V24
        *
V25
        **
V26
        77
V27
V28
     silicon diode, B.T.H., CS2A, cartridge
D9
D10 germanium diode, Philips
                                   0A81
Dll
D12
D13
D14
     inductance FOR TIPHONE
                                         1.5H - 150
                               EX 192
L2
                      17
                                  17
L3
                                  17
L4
L5
                                  11
     switch, mechanically linked with R98
SZ
    moving coil meter, 100 microAmp. f.s.d.,800 ohms
Ml
                                                        approx.
     headphone receptacle, DYNA-EMPIRE, D68FT, female
P3
P4
```

9400 mmf 500 VDCW

ceramic

DUPLEXER

DUPLEXER

Passive element components, Fig. 15

```
Tardaria W
R165 resistor VITROHM
                            330.000 ohms
                                                   10%
R166
                            220.000
                                                     99
R167
                    29
                             22.000
                                                     99
         17
C98
      condenser Philips 1,25 mf 3 VDCW
                                                electrolytic
C99
                            1,25 "
                                      3
C100
        99
                   T.C.C.
                            6
                                  29
                                      1,5 "
                                                     **
C101
                                      4
                            4
C102
                  Philips 1,25 "
        99
                                      3
                                           11
                                                     79
C103
        77
                      11
                                      6
                                           **
                                                     79
L17 inductance FORTIPHONE
                                 EX192
                                          1,5 H - 150 ohms
L18
                      77
                                   98
L19
          17
                      **
                                   77
L20
                      99
                                   **
                                            11
V33 transistor Philips
                             OC71
V34
                             0C71
V35
         77
                     99
                             0C71
```

P8 plug TELEX, miniature P9 " " " P10 " " "

MICR. microphone, FORTIPHONE, FM5