Usage of Hamelin cryptographer CX-52.

A. Introduction.

Mr. Boris Hagelin, head of Crypto $A . G_{n}$, has been a recognized expert In the field of cryptography since shortly after the First World War. Crypt A. G. with its predecessor organizations is today the oldest established fr in this field in the world. While it is impossible to disclose the identities of our customers, it is no secret that over forty governments are using our equipments and that the number is steadily increasing. Even more impressive is the loyalty to our products that has been demonstrated through the years by our customers. The confidence thus displayed in our products is, we believe, justified by the cryptom graphic and mechanical excellence of our machines.

The past forty years have seen advances in ciphering machines comparable to those in the same period of time in aircraft. The great volume of messages requiring protection in the Second World War, followed by the development of modern computers, necessitated major advances in the art of cryptography and consequently in the design of ciphering machines. The Grypto A. G. engages in continuing research in these fields, and our in e of ciphering machines has been carefully developed to met those as well as many other exacting demands.

In the machine type $\mathrm{Cx}-52$ Crypto A. G. provides a basic ciphering equipment which is so designed as to permit each individual customer to select and arrange a tremendous number of variable elements, each selection, and arrange. $=$ went being cryptographically entirely different from very other selection and arrangement. It is through the selection and arrangement of these

Ho.
variable elemente that you yourself create your own bersonal and unique oiphering mechins. The number of selections and arrangewente of these varimble elmonts is so great as to be far beyond the capacity of even the most powerful monern computer.

The best way in which to use the machine to cipher messages dependif upon the nature of the correspondence, and the spectal needs of those who corm respond. Consequently, Junt as there is no one best correspondence plan to cover all situktions, there is mo one beat. wny in which to uee the machines. The remarkahie Ilexihility of our machines permits a usage preve ciesly tallored to your particulax circumbtances. Thin, combined with the aclection and arrongemint of the variable elementn, constitutes a cipherine syatem which is truly individuml.

The mehine type cx-52 has been deaigned to permit encipherment of nay kind of clear language textes and no dpechal precautions are needed for messages of specialized or unusual contpnt. In particular the ube of the Wachine type $C X-52$ is not restricted to certain Ianguages or kinde of langugea, but can be adnyted to any lanpuage whatnoever. We wil be giad to adviae custonerg in this matter. Our standard machines are provided with the Latin alphabet, consisting of the letters A to z. However, we can also subply equipments with other alphabet, or symhols, melected mind arranced in oxect accordance wh the requirements of individual customers. Moreover, it is posaible to have one alphabet or set of symbols used for the cipher text and a difierent one for the olear text. Thie is particularly neeful when it is neoescaiy to send meseages internationally through commercial chansels which are nornaly lideted to the Latin alphobet. For inatance, the twenty-six letter hatin alphnbet may be used for the cipher even though the clear text be writton in a special alphabet. It is even possibla to have cipher text that can be read left to right and clear text that in read irom richt to left. Upon decipherment the clear text will appear in the symbols in which it was originally writere.

As with any system of encipherment, the details of your unlque mehine mat be afforded the greateat possible protection, This hind of informetion is like the combination to a mafe. Our aipherine machines are in may wys somnarable to afea. The manufncturer rielivere a product of great inherant aecurity. The purchaser, to toike advantape of thia, munt heve peremal keying element. In the case of the sefe, it is the combinationg in the

No.

case of the ciphering machine, it is the selection of variables combined with the usage. In either case, if this information falis into the wrong hands, the security provided by the equipment 1 s lost until the keying element is changed. It is one of the outstanding features of Grypto A. Ge equipments that when compromise is suspected such changes can conveniently be made without the expense of new equipment or even parts. In this conm nection, it should be pointed out that our equipment for machine encipherment require a far smaller mount of secret material to be protected than do most other ciphering systems, and that consequently this material is relatively easier to protect.

It is not good business practice for us to be knowledgeable of the details of the cuatomer's machine and usage, which should be truly national becretis. any more than it would be for the afe manufacturer to know the combinatica to his customer ${ }^{\prime \prime}$ safe. The safe manufacturer therefore gives hia customer advice on the basic principles of good combinations and on how to aet then in the fe. Similarly, the purpose of this lenflet is to provide you with a sufficient understanding of our mackine type CX-52 to enable you to create a undque machine and a usage tailored to your needs. Naturally we will always be delighted to give further explanation of the principlea outlined here, and advice on how to cope with particular requirements not adequately covered.
B. Gryptographic principles of the Hagelin cryptographer type CX-52. Our machine type CX-52 has been produced in many versions to weet the most exacting preferences of our customers. The most important advance over the machine type C-52 is the incorporation in the type CX of irregular advancement of the keywheels. The machine type C-52 produces, by a constant stepping of the keywheels, a very long keyinf chain which is the major factor in the ciphering. In the machine type $\mathrm{CX}-52$, the advanoement of the keywheels which interact to produce the key oycle in as imegular and unpredictable as the key chain itself. However, when irreguiamty in introduced into the stepping of the keywheels, it is necessary to take speciel. precautions in the selection and arrangement of the variable elevents whioh affect the stepping in order to insure that the fangth of the koytug chaln is not affected. The problen is how to achieven ideninidncebetirete. the dealre for maximur irregularity in stepping ofthereywhef for pedin

We conoider that our M model of the machine type CX-52 achieven this balance more effectively than earlier modele. Only fem single fules wust be observed in placement of the lugs on the drum bars and keying chain of maximum length is achieved despite irregular advancement of the keywheels throughout the cycle. The M model is used as the bads for this discussion. However, many of the remarks are equally applicable to older models of the machine type CX-52.

In technical terms, the cipher produced by the machine type CX-52 is demaxibed as polyalphabetic encipherment of the Vigenere or St. Cyr etrip type. That is to say, to encipher a aingle letter the machine oolecte one of twenty-six juxtapositions of pair of alphabetes new selection being made for each letter as it is enciphered. The seerecy that this machine provides is not due to the availability of twenty-six poadioninge of the alphabeta (a small number for the modern cryptomanalyat), but derives from the method of selection among the offsets, which is for all practical purposes absolutely unpredictable. This eelection is deterwined by a key which ia over $10,000,000,000$ letters long. The principal parts of the machine are in fact used solely for the generation of this key, and the machine is capable of producing over 10^{84} different keys of this length, dopending on the selection and arrangement of the variable elements. In addition, the simple external setting or the machine enables the user to begin his encipherment at any point in this key. The method of encipherment eraployed by the machine may be thought of aa one of abtraction, following this rule: let the letters of the alphabet be represented by the numbers frow 1 to $26,1 . e ., A=1, B=2, C=3, \ldots, \quad 2=26$. Then when a ietter is to benciphered, the machine computea the cipher letter from the plain letter by means of the following formula: $\mathrm{K}=\mathrm{P}=\mathrm{C}$, modulo 26 -w, wher K 1 a a letter of the key, P is the plain letter to be enciphered, and C is' the resultiag cipher letter. The cipher letter is further eodilied by the relative position between the primary and eecondary alphabets the typewhels. This relative setting is also oadily altered on the mahine, and nay be used to provide an additional element of eeorecy if deeired. Consideriag this, the complete ncipheming equation for the anchine ing

 Leterde enciphered. Once -
Wikhe machino acopends, fundoment

advereary is in possession of your complete selection and arrangement of the variable elements which generate the key and, in addition, the fterting point in the key for the particular message, and the relative positions of the primary and secondary alphabets on the two typewhede.
C. Principles of constructing a unique machine; inger etttings.

Having shown the signtificauce of the key in encipherment on our machine type $\mathrm{CX}-52$, we are now in a position to diacuse the eviection and arragement of the vaxiable aleanents in the creation of your undque veralom of our machine. A judicious procedure for this will aspure key, and conaequentiy cipher, of the highest quallty. Th machine type cK-52 comes equipped with a set of six keywheela, each carrying a pin disc. Each pin diac hae rortyseven pins around the circumference. The pins on each disc may be set in either of two positions, called "active" and "inactive". The discs are wo constructed that each pin may be set whthout regard to the aetting of any other pin. The settings of the pine on ach diac are some of the variable elements referred to in the discussion preceding. It may be of interest to ahow the number of different ways in which the pins may be set. Siace bach pin may be set in one of two ways and without regard to any other pla, a 47 pin disc, that is, a pin disc carrying forty-seven pins, may be set in any one of 2^{47} different ways, or over $120,000,000,000,000$ combinations may be aet on one wheel alone. Since the selection of the combination on one of these pin discs in the set of six in no way restricta the selection on any other dise, the total number of ways in which the pias may be set is actually the product of the number possible for each of the six or over 7.7×10^{84}. It can be seen that the possibie variations offered by this varjable element alone are so vast that they camot be exhaustsd: even a lifetime of work with the aid of the best modern computere would not make the silghtest impression on a number of this size.

The experts amployed by our sire, as well as others we have coneulted, recommend that in choosing a pattera jor setting the pins, a wothod be umed which is statistically randong One of the simplest methods. and one which Is as good as any other we know, consiate of rlippiag a coin once for anh ple to be get. If the obverse of the coln turng up, thepln iseet in the

not ueb such things as tablea of logarithm for the number ftreaw en they are not motistically random. or course it is necessary to record the pia bettinge ab they are selected, evan though thoy may be innebtately कet in a machines for all machines that are to correspond with one another math havis identical pin stetings. A convenient formet for doing thin in anom in Figure 1. An active pin setting may be indicated by the ingerw tion of a plua in the appropriate bos and an inactive pin eetting by the imestion of zero. It is evident that one wants to svoid a very uneven fietribution of active and inactive pina on any diacs to take an abourdiy extrewe caes. if one happened to make all the pins active on a given diec then its effoct would be just the same at all its positions. If you mant to be absolutily afe against any danger of an uneven distribution we enggeet that you sidght use some such rules as the follawing:

1. Do not allow more than three auccossive pine on any dise to have the same thte of activity.
2. See that no more than 26 nor less than 21 of the plna on any diac are active. The clocer to 50% the better the pattern will be.

You will find it quite easy to meet these rules by a few changes in your rancomly derived pattern. These limitations will reduce the number of possible pin patterns from 7.7×10^{84} to 4.2×10^{83}, an insignificant change in a number of this magnitude. The advantage to be gained by the even distribution of the pins fax offaets the reduction in the number of possible pin patterns. Figure 2 shows examples of pin settings.

When a considerable number of machines are to be set up at one time with the same inner settings so as to be able to correspond together, the setting and cheoking of so many ping may be somewhat time conouming, even with the device provided for the purpose with the machine. In recognition of this problem, we have developed a spechal device, the type SRP-58 pin setter. for use in these circumstances. It is based on the equipment wed In our factory, and will set all of the pins on a singie disc at one tiae in any desired combination with such rellability that no checking of the individual wheels is required. We will be glad to provide particulare on this equipment if desired.

Having selected the pin settings, we tum now to the insertion of the keyWeel groups containing the pla diecs into the machine. The machine type CK-52 is ao conetructed that the keywheel groups may be inserted into the
5. Keyweel five ateps one step whenever there in an active pin on elther keywheele one, two, thre or four.

6e Reywheel six steps one step whenever there is an active pin on either meywheels one, two, three, four or five.

The result of the foregoing law of atepping is that, although their prom gression 1s irregular, from any initial alignment the six koywhela will mitop through every poasible offset before coming back to the initial setting. This is aycle of 47^{6} or over $10,000,000,000$ steps. This cen be demonetrated relatively simply.

```
Lat: \(W_{2}=\) keywheal one, \(W_{2}=k\) gywheel two, otc.
\(P\) number of active ping which must be from 1 to 46.
\(P_{1}=\) number of active pins on \(W_{1}\) etc.
\(Q_{1}=\) number of insctive pane on \(W_{2}\), otc.
```

W_{\perp} steps one atep with each letter ciphered and therefore cycles every 47 ateps. W_{2} ateps one step every time there is an active pin on W_{1}, therefore every time W_{1} cycles, W_{2} steps P steps. P_{I} being from 1 to 46 nust be prime to 47. Conaequently W_{I} and W_{2} cannot return to their initial alignment until they have stepped through all possible aligraents or 47^{2} settings. W_{3} in adigla cycle of $W_{2} W_{i}$ steps avery time there is an active pin on W_{1} or W_{2}. Or inversely it doesn't stop only when there are simultaneously an inactive pin on both W_{1} and W_{2}. In 47^{2} steps, therefore, W_{3} steps $47^{2}-Q_{1} Q_{2}$ steps. This number must be prime to 47 , therefore W_{2}. W_{2} and W_{3} cannot return to their initial alignment until they have atepped 47^{3} steps. In the cycle of the flrat three keywheels W_{4} steps $47^{3}-Q_{1} Q_{2} Q_{3}$, This number must be prime to 47 , therefore w_{1}, w_{2}, w_{3} and W_{4} cannot return to their initial alignment until they have stepped 47^{4} steps. Similarly the first five keywheels return after 47^{5} steps and the entire aix keywheels return after 47^{6} steps. Therefore from any initial aligment of the six keywheels they will step through every possible alignant or over $10,000,000,000$ steps before returaing.

In the generation of key if a pin in the active poaition on the keywheel in the leftmost position is presented for interaction with the bar drum, each bar lug on the bar drum which is in the leftmost position on ayy bar will add a numerical value of one to the key for the encipherment of the pian letter set on the typewheel. If the pia so presented is in the fractive position, the corresponding bar luge will add nothing to the value of the key. Likewise, if a pin in the active position on the keywholl fa
the next to leftmost posithon in presented, each bar lue in the next to Lefteost position on any bar will add a numberical value of one to the key and so on for all keywheels. It should be noted in this connection, how--ver, that the nechanical process of the machine 18 such that no matter how may bar lugs are placed on a mingle bar, the value added to the key by that bar will never be greater than one. Also, a bar lug interncting with a pin in the active position will have exactiy the same efiect, regardlesa of which bar it is placed on so long as it is in the position on the ber corresponding to the position of the jreywheel concerned. In an eariy version ozth $C X=52 M$ ciphering machine tho first five bara contributed to both the key and the stopping of the keywheels. This complicated greatly the preparation of acceptabie Iugging patterns. There are also theoretical ndvantages to complete indepeadence of the key from the stepplng. Consequently on later models of this machine the offect of these five bars has been ilmited to the stepping of the keywheels.

The combination of these features means that when placing the bar lugs on the drum bars, single and systematic procedure can be used. which is both convenient for the person performing the task and subject to very few errors. without in any way reducing the quality of the key or reducing the secrecy provided by the machine. All of the bar lugs which are to be placed in the Leftmost position be but in place at once, beginning with the first bar anc proceeding upwards on succeeding bars until the required number have been placed. The bar lugs to be placed onnosite the next keywheel may now be put in place, beginning with the next unused bar, and proceeding with the rett in order, and so on. Bar lugs which have been so placed are easily checked to insure that the work has been done correctly, and in addition this sort of arrangement increases the smoothness of operation of the machine. thereby reducing operator fatigue when lone messages are to be enciphered.峝 diagram showing the placement of bar lugs in this fashion may be seen in Figure 4.

Sines the individual values of the key are composed of sums of numbers represented by the placement of the bar lugs, and since it is highly desirable to ensure that all key values from gero to twenty-five will be included in the key, it is vital to exercise care in the determination of the numbers of bar lugs to be placed opposite each keywheel. If this ie dome it is clear that every letter of the clear alphabet will be enciphered by every possible letter of the cipher alphabet with roughly equal frequency. An easy way to meet this condition, and one which takes full advantage of

No.
the capabilities of the machine, is as follows select elx numbere (corremponding to the number of positions on the bars) from one to lourteen whos aum ic twenty-seven corresponding to the total number of bars used for generating key. These numbers need not be all different. Observing that there are aixty-four different combinations of pin activity which the weywhels may present to the drum bare at any given time, calculate for each of these combinations of metivity what key value would be produced by them in the following way (please refer to Figure 5):

1. Write out ali of the possible sixty-four combinations of pin activity. This is residily done in aystematic fashion by following the order of binary numbers for those who are mathematically inclined. The ordering in Mgure 5 18 of this kinis however, the order is inmaterial since the combinationa wil
 represented by a plus sign and the inactive pins by a zero.
2. White the aet of aix numbers selected acrose the top of the liating. Agaln the order in which this is done is of no importance. They have bean lieted in descendiag order in Figure 5 purely for convenience.
3. geginaing with the firet combination, find the oum of all the mumbers which are written over a plus in the plrat combination. Write this sum to the right of the first combination. (If the sum is greater than twenty-ifiv, auberact twenty-six frow it, and record the resulting difference rather than the original sum obtained. For convenience on Figure 5 values over 25 are shom beside the number with which they pair. The wachine will produce thi effect mechanically in the process of encipherment.) Find the sum of 21 the numbers which are written above a plus in the second conbination. Record this sum to the right, as before, reducing it by twenty-aix if aecessary. Comtinue in this manner until sume corresponding to each of the sixty-four combinations have been compated. If the pin aettings have been chosem in accordance with the principles we have described, all of theee combinatione will occur in with approximately equal frequency and in a tyuly mpreddetable way in the operation of the eachine, wo that the reaul of your calculation With only these sixty-four combinations will be repreantative of the etatistical composition of the key examine the results of your calcuintione

the keywhels with full confidence that your machine in producing key of the higheat quality. While this procedure may eeow aomewhat labouricus at stret, a liftle experiance will enable you to correct faulte of the original eet by altering two or three of the original aumbers without changing their sum and to rechlculate only those combinations which are affected by the aiteration. A simple rearrangement of the numbers, however, will have the sam faults at the original set. Also it will soon be observed that a set of nubers containing one number in the range of ten to thirtean and another in the runge of aix to eight will obey this rule much more often than a aet which does not contain auch a combinetion. Pollowing are few typical sets which we have tested and found to conform to the rule stated above.

13	6	3	3	1	1
10	6	4	4	2	1
11	7	4	2	2	1
14	6	3	2	1	1
14	7	3	1	1	1
12	6	4	2	2	1

It will be observed that no set in our example can be rearranged to form any other set. While it is true that the machine can be made to produce an entirely different key by merely rearranging the numbers in aet without changing their values, the effect of such a rearrangement may be obtained by merely rearranging the keywheels in a corresponding manner. This is a much simpler and quicker procedure than removing and replacing the bar lugs. The computation of the number of cryptographically different arrangements of bar lugs on the drum bars is somewhat complex. Suffice it to say here that there are approximately 65,000 . Any one of these, of course, hay be used in combination with any one of the enormous number of conbinations of pir settings which are possible, each combination being in effect a different machine, producing a different key from any other machine.

This completes the discusaion of what are called the "inner" variable elements of the machine type cx-52. When all the pins, the keywheels, and bar lugs have been positioned according to your selection, the laner cover of the machine may be locked, using the key with two notches. These are the wamable elemente of the machine which, taken together, constitute your personal achine and which must be most carefully protected. If it ever
no.
1s muspected that these olements have been compromised, thes should be ohanged at once. The machine may be used without opening the inner cover for any purpose, and apparate key is provided which will lock and unlock caly the outer cover. This feature ia of great assistance in preventing unauthorised persons from flewing the elementa of your peraonal machine. aven though thoy way see the machine in operation. The clerk who carries out the actual enclpherment of correspondence has no need for access to these inner aettings, as we chall see, and it is good practice to provide him only with the key with the single notch which will open the outer case only, the double-notohed key being retained in the custody of special personnsl.

D. Principles of machine usage: outer settings.

The usage of your machine type CX-52 in an integral part of your over-all plan for secret correspondence, and no usage plan can be drafted without a careful analyais of your secret correspondence needs. Since eyery user has aifferent aecret correspondence requirementa, there is no one beet plan for secret correspondence and in turn no one best usage of the machine type CX-52. Nevertheless, just as in the case of the selection of inoer settings, there are principles valid for all aipher machines which apply to usage and the selection of the outer settings. The firet of these, which ahould be kept in mind at all times, is: the simpler the plan for secret correspondence, the better it will be. Every complication will increase the difficulty of acheving effective correspondence, and ita value must be carefully weighed against its cost in operating difficultios. The design of our machine type $\mathrm{CX}-52$ is swch that complete secrecy can be achieved with procedures of the utmost simplicity, making tedicus and conplicated cryptographic procedures altogether unnecesaary.

To prepare a secret correspondence plan, you shoula first deterane:

1. The number of correspondents involved.
2. Wh.th whom it is necessary for each of them to correspond.
3. hpproximately how many messages will be oxchenged in each case.
4. Whether there is any special need for "privecy" among certaln correspondente.
5. Whther any of the above listed circumstancers are subject to unexpocted chamee.

Arter carefully anlyaing the data collected, the planner ahould determine the eimplest correspondonce plan wich will meet all the requiremente. The requirement which wort estiously complicates all eecret correspondeace plane ia the "privacy" requirement, that 18 , the desire to limit to an שatent the ability of aome of the correspondents to decipher certain mesege not intended for them. Fortunately, the deaign of the machine type CX-52 is much that thit can be done merely by the preparation of a marate aet of inetructione for the outer settinge without resorting to a change in the inner sttings. The sdaplest possible situation for the planner of the secret correapondence exista when there is no objection to any indiFidual correapondent who is an authorized holder of the machine being able to read any inessage enciphered on the machine, which may not be intended for him but accidently comes into his possession. In such a situation, single set of usage instructions may be prepared for all correspondente following one of the systems for selecting outer settings which we chall describe below. In such a case, each correspondent mey addrese overy other correspoadent without having to resort to special instructions with the aftendant danger of selecting the wrong ones, and thus aending a message which cannot be read by the intended recipient. On the other hand, If compromise both of the inner settings and of the instructions should occur in the office of one of the correspondents, then the correspondence of 211 may be endangered; therefore, when a plan of this kind is in use, all correspondents must provide the greatest possiole protection to the usage instructions and to the machine itself.

When a need for limiting the ability of the correspondents to decipher messages to those actually intexded for ther exists, it is likely to arise from oase of the following situations:

1. The locstion of one or more of the correspondents is auch that the materials he holds are espectally vulnerable to compromes.
2. Correapondence on a particular subject 18 regarded as being more secret than others, and must have special protection to prevent those having no meed for the information from receiving it. When one of these requirementa existi, it is necesssury to prepare separate set of inetructions. for each group of correapondents having the need to correspond anong theme selves. This may be regarded as the preparation of several separate correspondence plans of the simpler type. with some correapondenta being each a member of a multiplicity of plans. The advantage of conducting the secret
oorrespondence in this manner, in addition to meeting the special "privacy" requirements, is that if one set of instructions is compromised, only that part of the correspondence which was enciphered using those inatructions can be in danger. The rest of the correspondence is umaffected. On the other hand, no matter how extreme the requirement for privecy is, there will almost certainly be messages which must be sent to nearly all corresm pondents at once, and then aither an additional set of special procedures is required or the same message must be enciphered according to several different eets of instructions, either of which imposes a burden on the central office. The problem an beoone still more complicated if there is a requirement for flexibility and a need to hendle sudden changes and emergencies.

It may happen that in determining the requirements for the cearet correspondence plan, it will be found that the number of messages to be exchanged mong some correspondents is very much larger than the number to be ex-. changed among others. While the machine type CX-52 offere a very high apeed of encipherment for a hand-operated machine, where realiy large volumee of correspondence must be enciphered there is a definite advantage to an electrical machine. At the same time, it is most undesirable to complicate the aecret correapondence plan by providing difeerent ciphering machines to correspondents merely because of a different volume of work. In recogrition of this very troublesome problem, we have designed an electrical base for your mechine type CX-52 which will convert any model type cX-52 into an electrical ciphering machine in matter of minutes. The converted machine ia absolutely compatible with tho hand-operated model, and all of the same usage instructions may be employed. It is operated by a keyboard, offering nearly the same speed as a typewriter. The production and aale of this as an accessory, father than offering a separately designed and built electrical machine, results in great flexibility and economy for the customer. Where the budget is anall, it is poasible ta begin operation with the full secrecy of the machine type CX-52, but without the expense of purchasing all electrical equipment. Then as the puade are available, or as the amount of enciphering increasea, the original machines may be converted a few at a time to electrical operation, without incurring any conversion problems whatsoever or any gratar expenes than would have been involved in purchasing all electrical equipment originally. In the initial purchase of machines, it is often found to be desirable to purchase electrical bases for those correspondents having a great deal of
anciphering to do, such as the central office and a few large posts, and allow all others to use the manually operated machines. Further, so that the amallest outpost may correspond wh the largest and most modern auto inted comunication center, without oomplioating the aecret correspondence plan in the least, ve have available an attachment, PE 61, for the machine type cX-52 which will produce the enciphered message on perforated paper tape in form ready for input to automatic conmunication facilities, and will accept an enciphered message on perforated tape and deoipher it mutomatically.

Having considered all of the factors listed, the plannar must determine the absolute minimum number of separate instructiona neceasary to atiafy the conditions and procead to prepare them. Let it be noted once more that no information about the inner settings is necessary for the operator of the machine. Every precaution should be taken to inaure that no such information is contained in the usage instructions. It will be remembered that the complete inner and outer settinge are required for an adversary to decipher your correapondence, and by keeping information concerning the inner settings out of your usage inatructions, you will protect the correspondence even when the usage instructions are compromised.

The two probleme of usage are firat the method of selection of the variable blements for the outer settinge, and aecond the method of informing the intended recipient of the message of the selection that has been made. The vaiables to be chosen for the outer settings are the relative position between the primary and secondary alphabets on the typewheele, referred to in section B_{1}, and the keywheel allgment. The keywheel allgament is the sequence of letters and numbers, one on each keywheel, which is vigdie through the alote on the front of the machine and in a line with the white index line. The keywheels are sasily moved by hand, one at a tine. to bring any desired keywheel alignment into place, and it is this window eotting that determines the starting point in the key to be used to encipher the message. The relative position between the primaxy and secondary alpha= beta on the typewheels may be adjusted merely by eeparating the two type= wheels and rotating one of them until the desired letter is brought into juxtaposition with the A or the other. (Please see our leaflet No. A 035.) The keywheal allgment chould be changed with the encipharment of avery
 are enciphored with all of the variable elements exactiy the same, the
encipherwent of the peagagen is vulnerable to attack by a sidlled adversery. Soretimea the relatite pobition between the two typewheels is also changed \& eleh new mestan in is enoiphered. More comoniy it is kept the same at all tines between chosen correspondents or for fixed time periods for all correspendents. Once outer attings are selected for the messege, they must be tramanteto to the recipient. The secrecy provided by the CX-52 $1 a s 0$ gront that even if the outer aettings for a message are known to the advergary, he will be unable to read the measage unlegs he ite also in pose seaglon of the inner settings of the machine. However, the sending of the outer atttinge openiy or an clair to the reciplant should nevar be engagea In ae regular preotice. If the inner settings have been compromised Wthout your knowledge, the message can be read in such a olrcumstances ors If the inaer eettings should be compromised some time in the future, all memsagea which have been handied in this way may be read. Furthermore, it Ls characteriatic of all known ciphering ayatems, that if a large enough number of messages of which the precise keying elemente are known are col= lected together, some further information about the method of encipherment may possibly be deduced by a skilled adversary. Therefore it ia desirable to conceal this kind of infomation.

As In the selection of the pin gettings for the inner settings of the machine, nothing better than selection at randon can be recormended for the selection of the variable elementis in the outer settings of the machine. The number of choices possible for the keywheel aligmments (over $10,000,000,000$) is so vast that the chance of repeating an alignment purely Jy accident is so small as to be negligible. This random aelection may be performed in advance by a central bureau and lista provided to the correspondenta, or the selection may be performed by the clerk who enciphers the mesanges. Advance preparation of lists has the advantage that they can be prepared under ideal conditions at a central office by experienced personmel. Every requirement for limited ability to decipher will require a separate list. They are quite satisfactory for coriespondence between a Limited number of correspondents under stable conditions; however, a secret correspondence plan which makes use of these lists tends to be inflexible and unable to cope with emergencies or unexpected communications needs. For Instance, correspondents under the secret correspondence plan, who do not normally comespond with one another, may not have been provided with a comon list; then an unexpected need for them to correspond will necesgi= fate their doing so through the central office where all Lists are held, a
very slow and frequently expensive procedure. If there is large number of correspondents, and if it is desired to limit the reading of correa-. pondence by certaln of them, the number of lists involved and the complications ensuititg tend to discourage thelr use. If, however, the commaniong tiens plan is buch that the use of lists is practical, it is desirable that there bo noans by which the listed outer settings can be associnted correctly with specific meseages if the list should be compromised. This may be whieved by having the oode clerk select in a random manner from the List rather than use it in order, and providing him with a secret means of indicating hia choice to the recipient. This may be done in a number of waye, some simple and some complex. One way is to prapare the liate 1a format with coordinates similar to those used on maps. The choice from the list may then be indicated by placing the coordinates of the chosen window setting at the beginning of the enciphered text. If many lists are in ues, it will also be necessary to indicate which list was used by adding a letter or number to identify the 11 st . Outer cettings which are selected from a prepared list may also be enciphered in the same manner as that described for settings which are chosen directly by the code clexk.

Leaving the random selection of the outer settinge to the code clerk had several advantages. It requires the smallest possible amount of secret material to be contained in usege documents, leaving less to be lost in the event of a compromise. It is practical even under very complicated secret correspondence plans and is flextble enough to be readily adapted to almost any kind of change, even the addition of new correspondents to the plan. On the other hand, leaving the determination of the outer variables to the discretion of the code clerk has the disadvantage that it is difficult to force him to select the variables in a truly random manner. This, however, can be overcome by variety of simple devices in the usage instructions, telling the code clerk how to proceed to select the outer settinge in a random fachion.

Whichever method of selecting outer settings is chosen, it will be necessary to encipher the choice and transmit it to the correspondent who is to decipher the message. One of the simplest and safest ways of doing this is to encipher the outer settings (or the coordinates giving their location in the prepared list) on your machine type cx-52. Not only is this the sefest way, but also the flexible design of the machine type $C \times-52$ allows you to create limitations for privacy requirements through a aimple and
-legant variation of this method (see Figure 7). To begin with, all thone Who must correspond with one another are supplied with a single "basic" outer setting. This consista of six letters or numbere for the keyweele and one letter for the relative setting of the two typewheels (if used). To enclpher the outer settings which have been selected for trite message, either from a prepared list or chosen by the code clerk, (or even the coordinates giving the location of a window aetting and alide in the pre pared 1ist) the basic outer settinge are set on the machine in the normal fashion and the chosen settings for the message enciphered in the same manner as you would encipher a message. It is desirable, for the jake of reliability, to repeat the message outer aetting and encipher the result ing twelve letters. Then in the case of transmission. by radio, or other corrupting influence, a check is provided on the receipt of the oorrect version. This will result in twelve letters, or three groups, which must be sent with the enciphered message, and which are on the surface completely indistinguishable from the message itself. Having enciphered the outer settings for the message on the basic settiag provided for the purpoae; the chosen setting for the message is now placed on the machine and the encipherment of the message can proceed. The recipient of the measage hat only to repeat this simple procedure to obtain the outer settinge necesarsy to decipher the message. First he sets the prearranged basic outer settinga on his machine and deciphers the first twelve lettexs of the message, thereby obtaining the outer settings for the message. He then sets this outer setting on his machine and proceeds to decipher the message. It oan be seen at once that the proper outer settings to decipher the message cannot be ascertained by anyone who does not have possession of the prearranged basic settings and in addition the inner settings of your personal machine. Furthermore, an absolute minimum of secret material is required; so amall it is in fact that it may even be memorized in case of real necessity. Now, if it is desired to create a special usage for corrempondents requiring priwacy, it is only necessary to provide them with a special basic outer setting for the encipherment of their message outer settings. No one not in possession of the basic settings can detezaine the proper setting for deciphering the messages; thus the requirement fors limitation of those who can deci pher the come epondence 1 smet trithbothe certainty and ease.

erch one by itself; then advance any keywheel ohowinf a number to the next letter. This may then be taken as the keywheel alignment to be used for the encipherment of the message. Another simple method is to place a pencil point at random on newspaper and set the keywheels in accordance with letters selected in this way. Any procedure that will serve to discourage the code clerk from repeatedly selecting the same outer settings wil serve.

E. Sumaty $=$

In the machine type CX-52, you have purchased a machine of the most advanced cryptographic design, and the utmost in mechanical reliability and operational flexibility. To obtain the full benefit of the secrecy which this fine equipment provides. only the following simple rules need be followed.

1. Prepare your personal, inner settings in accordance with our aurgestions given above, i.e., select the pin settings at random and test the numbers of bar lugs to be attached to the drum bars in accordance with the procedure given.
2. If it is ever suspected that the inner settings have fallen tnto the hands of an adversary, change thetil at once.
3. When messages are to be enciphered on the machine, select the outer settings at randon and transmit them to the recipient in a secret form. 4. Exercise caution in the selection of the outer settings so that the same outer settings are not used repeatedly on different messages.

For correspondents who need to encipher a large volume of material, various attachments to speed the work and to make the machine type CX-52 compatible with automatic facilities are available. For those having only a few messages each week, the hand=operated models are most economical and reliable.

In planning the correspondence, introduce no needless complications, but provide through simple variations for the privacy of special correspondents when required. In preparing instructions for your code clerks, remember that they will do the best and fastest work if the procedures are simple, sixed, short, and as interesting as may be.

MEYMWEEL

DIVISION

$$
A \quad B \quad C \quad D \quad F
$$

1	$+$	0	$+$	t	0	0
2	+	0	0	0	$+$	+
3	0	t	+	0	0	0
4	0	0	0	+	0	0
5	+	0	O	$+$	$+$	+
6	+	0	+	0	0	0
7	0	+	\pm	+	+	0
8	0	+	0	$+$	+	$+$
9	0	+	t	+	0	0
10	+	0	t	0	0	4
11	0	0	0	+	0	0
12	+	$+$	+	0	+	+
13	+	+	\bigcirc	0	0	t
14	0.	0	$+$	$+$	$+$	0
15	$+$	$+$	0	0	0	0
16	0	$+$	$+$	+	$+$	$+$
17	0	$+$	0	0	t	0
18	0	0	0	$+$	+	+
19	\pm	\pm	1	0	0	0
20	+	\pm	0	0	t	0
21	0	t	0	$+$	0	$+$
22	$+$	0	\pm	+	. 0	0
23	$+$	0	\bigcirc	+	$+$	$+$
24	0	0	+	\bigcirc	0	0
25	$+$	$+$	O	+	0	+
26	0	0	+	+	$+$	$+$
27	t	0	$+$	0	0	0
28	$+$	4	0	0	+	t
29	0	0	$+$	$+$	+	0
30	$+$	0	0	0	0	+
31	$+$	$+$	+	+	0	$+$
32	0	0	0	\bigcirc	+	$+$
33	0.	+	+	0	\bigcirc	0
34	0	$+$	+	0	+	0
35	+	0	0	+	0	4
36	0	0	+	+	+	0
37	\bigcirc	0	+	+	$+$	+
38	\pm	+	0	0	0	0
39	$+$	\pm	+	0	t	\bigcirc
40	0	$+$	0	+	0	0
4.9	0	0	0	0	0	\ddagger
42	$+$	$+$	0	0	+	+
43	$+$	0	$+$	0	0	0
44	\bigcirc	0	\bigcirc	+	$+$	0
45	0	+	0	0	0	+
46	$+$	0	0	0	\dagger	+.
47	0	$+$	+	+	+	$+$

No.

Example of Typical Set of Pin Patterns

0	0	0	O	0	0	0
$+$	0	0	-	0	\bigcirc	13
0	+	0	\bigcirc	0	\bigcirc	7
$+$	4	0	0	O	\bigcirc	20
0	0	$+$	0	0	0	3
$+$	0	$+$	0	-	-	16
0	+	4	0	0	0	10
$+$	$+$	4	0	-	0	23
0	0	0	$+$	0	0	2
$+$	0	0	+	0	0	15
0	+	0	$+$	0	0	9
$+$	t	0	$+$	0	\bigcirc	22
0	0	$+$	4	0	0	5
$+$	0	$+$	+	0	0	18
0	$+$	$+$	+	0	0	12
$+$	+	+	+	0	\bigcirc	25
0	0	\bigcirc	0	+	0	1
$+$	0	\bigcirc	0	t	0	14
0	$+$	0	0	+	0	8
$+$	$+$	0	-	$+$	\bigcirc	21
0	0	$+$	0	$+$	0	4
+	0	$+$	0	$+$	0	17
0	+	$+$	0	$+$	0	11
$+$	+	$+$	0	$+$	0	24
0	0	0	$+$	t	0	3
$+$	0	0	$+$	+	0	16
0	+	0	+	$+$	0	10
+	$+$	0	+	$+$	0	23
0	0	+	+	$+$	0	6
+	0	$+$	+	+	0	19
0	+	+	+	+	0	13
$+$	+	+	4		0	0

1373211

Note: This is an extremely frood-tur lug pations. it ia poanible for any clear text letter to be encipherea by every cipher text letter with as equal a probability as feasible.

4443443

NO. OF OCCURRENCES OF EACH SUM

SUM
NO.
026
1
-
-
6
-
-
-
15
$-$
-

Note: This bar lug pattern is most unacceptable because only \quad even key valuea sre used and these vary widely in frequency. It ls not poasible for a given clear text letter to be enciphered by every cipher text letter.

No.

It is destred to enciphes messagemzatig basic setting technque, prearyanged baxic being $\mathbb{K} Q \mathbb{N} Z$

The oparator sets the stx keywhein groups in his machine so that the fin prearranged lettere $K 1, Q H N Z$ appear againat the inorx line.

The operator next selects at random by any convenient means efx letterce lat us tuppose he selects M M CF Lo Ho writes this out repeated, i.e., W M C F I W MZCFI。

He encipheres this twelvo-letter group on hia machine aet at the prearranged baaic.
 indicator group and are placed ab the ifrit twelve letters of the cipher text.

Next the operator rebeta the fix keywhel groups to W M Z C F I and enciphers the mesenge. It is urged that external information auch as mesagige mumbers, olassifim cation, address information, etc. be reduced to minimun as such data is of considerable value to enemy analystis. All posaible data of this type should be eaciphered with the clear text as part of the message.

The raciplent of auch memage sets up the prearranged babic $K L Q: N Z$ on his machime and proceede to decipher $Q L C N F-R Z 2 N P-S Y$. If the mesage is not corrupt he will get WMZCFLWMZCFL. The repetition confirms he is proceeding properly.

Next he sets up the indicated outer setting WM $Z T H$ on his machine and deciphers the message proper.

Should a letter in the indicator be corrupted in transmiasion so that the recipient when he deciphers gets conflict, as WM CFLXMZCFI, the difficulty ia readily apparent and in two tirials the mesaage will be deciphered. It is rare that more than a siggle letter will be corrupt. Such a procedure insures that the message will not be delayed by corruption.

Obviously there are many variations of this.method. The message outer aetting W M Z CF L could have been enciphered after the message and the result placed on the end of the cipher.

This basic setting technique has the additional advantage of concealing the message indicatorn.

Fhemple of Beade Setting Techaique of Message Encipherment.

